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Prediction of cellulose nanofibril (CNF) 
amount of CNF/polypropylene composite using 
near infrared spectroscopy
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Abstract 

The final goal of this study is to establish a classification method of cellulose nanofibril (CNF)/plastic composites such 
as their CNF amount, CNF types, and resin types, which are expected to progress the commercialization in the future, 
using near infrared (NIR) spectroscopy. To achieve this goal, NIR spectra of injection and film samples with different 
types and addition ratios of CNFs in CNF/polypropylene (PP) composites were measured and analyzed in the range 
of 1000–2200 nm. The results of the principal component analysis using all samples suggest that CNF addition ratio 
and sample shape could be expressed by principal component (PC) 1 and PC2 scores, which relate to the chemical 
components of PP and CNF complexly. Furthermore, the partial least-squares (PLS) regression model was able to pre-
dict the CNF addition ratio with about 2.0% accuracy, regardless of CNF type and sample shape. To develop an easier 
model compared to the PLS model, it was calculated to the simple linear regression model, which used the absorb-
ance quotient of optimum wavelengths combination (OWC). Although this model did not have the accuracy to use 
the quality control, it is able to discriminate CNF addition ratio of CNF/PP composites with almost the same accuracy 
as the PLS model. However, if it is possible to separate the sample shapes before the analysis, it is suggested that the 
OWC regression model is able to predict CNF addition ratio of CNF/PP composites with less than 1% accuracy.

Keywords:  Cellulose nanofibril/polypropylene composite, Cellulose nanofibril amount, Near infrared spectroscopy, 
Quantitative analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The production of cellulose nanofibril (CNF)/plastic 
composites gains attention due to their better physi-
cal and mechanical properties [1–3]. Furthermore, CNF 
has some benefit compared to other fibers to use plastic 
composites such as biodegradability and renewability. 
The global market of nanocellulose-added composite 
materials including CNF/plastic composites was 390.8 
metric ton (MT) in 2020 and the volume is expected to 
reach 922.5 MT in 2026 [4]. However, this rapid increase 
may possibly result in CNF/plastic composites causing 

excessive waste in the near future. Therefore, it is neces-
sary to find the effective and efficient recycling method 
of CNF/plastic composites. The products of commercial 
plastics and plastic composites have been successfully 
recycled from end products such as automobile parts, 
appliances, and films. Mastellone [5] reported that the 
recycling methods of plastics could be allocated to four 
major categories, viz., re-extrusion (primary), mechani-
cal (secondary), chemical (tertiary) and energy recov-
ery (quaternary). In these categories, re-extrusion and 
mechanical recycling are waste plastic reusing methods 
without a chemical reaction process. The advantage of 
the recycled plastics and composites is that they can be 
easily applied to the same purpose as original products 
though these methods. It was reported that the plas-
tic composites with cellulose-based materials did not 
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decrease physical and mechanical properties after these 
types of recycling [6, 7]. Thus, it is considered that these 
recycling methods are suitable for CNF/plastic compos-
ites. To conduct these types of recycling effectively, it is 
required to classify the composites into the smallest pos-
sible groups such as groups of resin types and additive 
types in advance.

Many researchers have reported that the optimum 
CNF addition ratio on CNF/plastic composites var-
ied in each type of physical and mechanical properties. 
For example, the Young’s modulus of these composites 
increased with increasing CNF addition ratio [8–11]. On 
the other hand, their elongation and toughness decreased 
with an increase in CNF addition ratio. In addition, it 
was reported that there was an optimum CNF addition 
ratio to maximize the cell density and minimize the cell 
diameter of CNF/polypropylene (PP) foam [12]. These 
properties are also influenced by CNF and the types of 
plastic; however, these reports suggest that the classifi-
cation of CNF/plastic composites in each CNF addition 
ratio is important when the re-extrusion and mechanical 
recycling are conducted. Therefore, near infrared (NIR) 
spectroscopy is focused on this study.

NIR spectroscopy is a non-destructive analytical 
method based on the reflectance or absorption of electro-
magnetic radiation at wavelength range of 800–2500 nm 
(12,500–4000  cm−1) [13]. Since NIR spectra allow clear 
discrimination of various organic compounds, NIR spec-
troscopy is known to be a useful technique for discrimi-
nating different types of wood-based materials, plastics 
and these wastes [14–18]. Therefore, it is considered 
that NIR spectroscopy would have a potential to evalu-
ate the quantity of CNF from CNF/plastic composite. 
Furthermore, the practical use of CNF/plastic compos-
ite classification using NIR spectroscopy should be easily 
implemented, because a plastic sorting device using this 
method has been already used in the industry.

The final goal of this study is to establish a discrimi-
nation method of CNF/plastic composites using NIR 
spectroscopy. In this study, NIR spectra of CNF/PP 

composites with various CNF addition ratio were meas-
ured and the prediction models for CNF addition ratio 
were evaluated. We selected PP for the base plastic in 
this study because PP is one of the most common plastic 
bases of composite material. Absorption and scattering 
in the NIR region are strongly affected by the thickness 
of the material; however, the shapes and thickness of 
CNF/plastic composite wastes would not be uniform. 
Therefore, NIR spectra of CNF/PP composites with two 
kinds of sample shapes and two types of CNFs were 
investigated.

Material and methods
Materials
Table 1 shows the detail of sample conditions, viz., sam-
ple name, the shape of the sample, CNF type, CNF addi-
tion ratio, and the number of samples. In this study, two 
kinds of CNFs which are the trial products of compa-
nies made by mechanical processes (called CNF-A and 
CNF-B in this study) were prepared to investigate the 
effect of CNF types. Although there is also a mixture of 
around 10–100 nm width and a few µm length CNFs, the 
raw materials of these CNFs are different. These types 
of CNFs are defined in ISO/TS 21346:2021 [19]. Before 
making samples, pellets were made of one type of PP and 
each of CNFs by Toclas Corporation in Japan. In the pel-
lets with CNF-A, the CNF addition ratio was adjusted to 
0, 1.0, 3.1, 5.0, 6.2, 10, and 20 wt%. On the other hand, the 
addition ratios in the pellets with CNF-B were 0, 1.0, 2.0, 
3.3, 5.0, 6.5, 8.0, and 10 wt%.

Sample preparation
Each of the pellets including CNF-A of 0, 1.0, 3.1, 
5.0, and 6.2 wt% or CNF-B of 0, 1.0, 2.0, 3.3, 5.0, 6.5, 
8.0, and 10 wt% was molded to an injection sample 
(60 × 10 × 3  mm) with an injection pressure of 5  MPa 
at 200  °C using an injection-molding machine (Baby-
plast 6/10P, Cronoplast, Italy). In this study, the injec-
tion samples made of the pellets with CNF-A and 
with CNF-B were called Injection-A and Injection-B, 

Table 1  The details of sample conditions: sample name, sample shape, cellulose nanofibril (CNF) types, CNF addition ratios, and 
number of samples

a The size of injection and film samples was 60 × 10 × 3 mm and 150 × 10 × 0.5 mm, respectively
b Both CNFs were the type of cellulose nanofibril in ISO/TS 21,346:2021 [19]
c The number of samples for each CNF addition ratio was shown. Within the parenthesis was shown the number of each sample set for quantitative analysis

Name Shapea CNF typeb CNF addition ratio (wt%) Number of replications per CNF 
addition ratioc

Injection-A Injection CNF-A 0, 1.0, 3.1, 5.0, 6.2 20 (calibration set = 13, test set = 7)

Injection-B Injection CNF-B 0, 1.0, 2.0, 3.3, 5.0, 6.5, 8.0, 10 3 (calibration set = 2, test set = 1)

Film-A Film CNF-A 0, 5.0, 10, 20 8 (calibration set = 6, test set = 2)
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respectively. Furthermore, the pellets with CNF-A of 
0, 5.0, 10 and 20 wt% were molded to films with size 
of 0.5  mm thickness and 130  mm width at 200  °C by 
a T-die extrusion machine (Research Laboratory of 
Plastics Technology Co., Ltd, Japan). Afterward, these 
films were cut into 150 × 10 × 0.5 mm. The film samples 
were called Film-A in this study. All samples were con-
ditioned at room temperature over 1 week prior to the 
NIR measurement.

Measurement of NIR spectra
NIR diffuse reflectance spectra were measured using a 
spectrophotometer (UV-3600 Plus, Shimadzu Co. Ltd, 
Japan). The NIR spectra were obtained at 2  nm inter-
vals over the wavelengths from 1000 to 2200 nm. Three 
scans were repeated and averaged in each sample.

Data analysis
To remove the scattering effect due to the difference 
of sample thickness, standard normal variate (SNV) 
was performed. Each sample of Injection-A, Injection-
B, and Film-A were randomly split into the calibration 
and test sets. The number of each sample set for analy-
sis is shown in Table 1.

A principal component analysis (PCA) was performed 
for SNV spectra of the calibration set to verify the spec-
tral variation and sample parameters such as sample 
shape, CNF type, and CNF addition ratio. The data were 
analyzed in the mean-centered states before PCA.

After that, the partial least-squares (PLS) regression 
analysis of CNF addition ratio was performed on the 
basis of the mean-centered SNV spectral data of cali-
bration set. Prediction accuracy of the PLS model was 
evaluated by full cross-validation and external test set.

In addition, the absorption quotient of all wave-
lengths in each sample was calculated using the raw 
spectra ( tij ) as in the following equation:

where �i and �j are the absorbances at i and j nm, 
respectively.

The highest regression coefficient (R) between tij 
and CNF addition ratio in CNF/PP composites was 
searched and then the linear regression model to pre-
dict CNF addition ratio was established using the tij at 
the highest R. We defined this model as the optimum 
wavelength combination (OWC) regression model in 
this study. The OWC model was constructed to develop 
an easier model compared to the PLS model.

(1)tij =
�i

�j
,

Results and discussion
Raw and SNV NIR spectra
Figure  1 shows the raw NIR spectra of each calibration 
set of CNF/PP composites. The baseline of all samples 
decreased with an increase in the CNF addition ratio, 
due to the increase of scattering by the CNF as a scatter-
ing medium. In film samples under the same CNF addi-
tion ratios, uneven absorbances were observed under 
the lower 10 wt% CNF addition ratios, especially in 
1800–2200 nm wavelength, may be due to the non-uni-
form thickness of the sample edge caused in the cutting 
process. The variation in thickness was clearly shown in 
the low CNF addition ratio samples. In all samples, the 
strong peaks of second overtone CH symmetric stretch-
ing vibration (about 1210 nm) and the first overtone CH 
degenerate stretching vibration (about 1720  nm) were 
observed. The peak of the CH combined vibration of 
stretching and deformation (about 1410  nm) was also 
observed; however, this peak became weak and broad in 
Film-A with 20 wt% CNF addition ratio (Fig. 1c). These 
peaks were mainly assigned to the CH2 and CH3 groups 
in PP. Furthermore, a weak and broad peak increase 
occurred at about 2110  nm according to the increas-
ing CNF addition ratio, attributed to the OH combined 
vibration of stretching and deformation derived from 
CNF.

Figure 2 shows the NIR spectra of each calibration set 
of CNF/PP composites after SNV treatment. After SNV 
treatment, the baseline became almost uniform regard-
less of CNF addition ratio. The SNV treatment reduced 
the variability between film samples with the same CNF 
addition rates (0 and 5 wt%) observed in the raw spec-
tra (Figs.  1c, 2c). On the other hand, some films with 5 
and 10 wt% CNF showed similar absorbance values. It is 
thought that the diffuse reflection by NIR ray decreases 
in thinner samples. It may also be strongly affected by 
topical CNF aggregation. In addition to the chemical 
peaks shown in raw NIR spectra, a weak and broad peak 
was observed around 1490 nm (intermolecular and intra-
molecular hydrogen bonds in CNF) and about 1930 nm 
(OH combination vibration of asymmetric stretching 
and deformation band) in SNV-NIR spectra. Accord-
ing to increase in CNF addition ratio, the peaks derived 
from PP decreased, whereas these from CNF increased. 
On comparing the sample shapes, the spectral shapes of 
Injection-A and B were almost the same (Fig.  2a, b). In 
this study, the base plastic and sample shapes were the 
same in all injection samples. Thus, it is natural that the 
absorption of Injection-A and B without CNF is almost 
the same. A difference in absorbance of NIR between 
Infection-A and Infection-B including different kinds of 
CNFs was also not observed. This result suggests that 
CNF kinds do not affect the CNF/PP composites on the 
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NIR spectra. The base material of these CNFs was dif-
ferent; however, their size and might not be significantly 
different in this study. CNF has significantly different size 
and shape types, such as TEMPO-oxidized CNF [20]. 
This type of CNF is prepared by the chemical modifica-
tion process and has 3–4  nm width and the character-
istic functional groups on the outer surface of the fibril. 
It is called individualized CNF in ISO/TS 21346:2021 
[19]. Hence, it will be necessary to confirm the spectra of 
composites using these types of CNFs for clarification of 
the effect of CNF types in the future. Furthermore, the 
absorbance changes of films (Fig.  2c) were smaller than 
those of injections (Fig.  2a, b). This is the effect of the 
sample thickness, which can be explained by Lambert–
Beer law.

PCA
Figure  3 shows the result of PCA for SNV-NIR spectra 
with all CNF/PP composites. PC1 and PC2 described 
79% and 14% of data variance, respectively. Therefore, 
93% of the existing variances in all the studied spectra 

can be captured by two PC. As shown in Fig.  3a, the 
CNF addition ratio increased with an increase in the PC1 
score with all samples; however, the score was different 
between the injection and film samples with the same 
CNF addition ratio. The PC2 score identified the CNF 
addition ratio, though it was not remarkable compared to 
the PC1 score. Furthermore, a difference in the PC2 score 
was observed between the sample shapes.

In the loading plot of PC1 and PC2 (Fig.  3b), PC1 
showed the highest positive loading around 2100 nm and 
the highest negative loading at 1760 nm. PC2 showed the 
highest positive loading at 1730 nm and the highest nega-
tive loading at 1930 nm. These wavelengths derived from 
chemical bonds of PP and CNF can be observed in the 
SNV-NIR spectra except for 1760 nm (Fig. 2).

The results of PCA suggest that the CNF addition ratio 
and sample shape could be expressed by PC1 and PC2. 
With these results, we deemed that it was possible to 
make the model to predict CNF addition ratio in CNF/
PP composites. Therefore, linear regression analyses were 
carried out to develop the prediction model as follows.
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Fig. 1  The raw near infrared (NIR) spectra of each calibration set of CNF/polypropylene (PP) composites: a Injection-A, b Injection-B, c Film-A. The 
details of sample conditions are shown in Table 1
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Fig. 2  The NIR spectra of each calibration set of CNF/PP composites after standard normal variate (SNV): a Injection-A, b Injection-B, c Film-A. The 
details of sample conditions are shown in Table 1
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PLS regression
The results of the PLS regression model for estimating 
CNF addition ratio using SNV-NIR spectra are shown in 
Table 2. It is required to configure an appropriate number 
of factors which show the same coefficient of determi-
nation (R2), standard error (SE), and the ratio of perfor-
mance to standard deviation (RPD) in calibration and 
test sets. Furthermore, it is needed to avoid the overfit-
ting caused. However, this model resulted in a little over-
fitting, may be due to the small number of samples for 
Injection-B and Film-A. Furthermore, it may be related 
to no difference of SNV-NIR spectra of some films with 
5 wt% and 10 wt% CNF (Fig. 2c). In this study, the opti-
mum number of factors, where R2, SE and RPD did not 
deviate significantly, was three. In this case, the RPD of 
cross-validation (RPDV) and prediction (RPDP) were 5.42 
and 6.55, respectively. When RPD exceeds five, the model 
can be used for quality control in general. Even this 
model has the problem of overfitting; however, the pre-
diction accuracy is sufficiently adapted to quality control 
of CNF content. Furthermore, a 95% reliable section is 
double of standard deviation (SE/√2), which was 1.26 for 
the calibration set (SECV) and 0.93 for the test set (SEP). 
Thus, it was assumed that this model could predict CNF 
addition ratio with about 2.0 wt% accuracy in this study.

Figure 4 shows the regression plot of the optimum PLS 
regression models. The regression coefficient showed a 
high positive value at 1480 and 1930 nm and a high nega-
tive value at 1850 and 2200 nm. A lot of wavelengths of 
the high regression values were similar in wavelengths of 
the high PCA loading of the PC1 and PC2 scores (Fig. 3), 
especially the 1930  nm showed the highest value of 
regression and PC2 values.

OWC regression
The PLS regression model in this study was able to pre-
dict the CNF addition ratio with about 2.0 wt% CNF 
accuracy regardless of CNF type and sample thickness. 
However, to apply the method to actual production line, 
it is desirable to establish a simple estimation method 
which can compute the CNF addition ratio with sim-
ple data with narrow wavelength range. It was reported 
that it was possible to estimate the wood flour amount 
in wood/plastic composite with the quotients of wood 

and polyethylene infrared absorption peaks [21]. It is 
considered that a similar method can be used for CNF/
PP composite quantification in this study because of the 
presence of PP and CNF absorption peaks in the NIR 
spectra. However, a lot of peaks related to PP and CNF 
were observed in the NIR spectra in this study. Hence, 
we calculated the absorbance quotient of all wavelength 
combinations. Then, the linear regression model, viz., 
OWC regression model, was established using the best 
wavelength combination using raw NIR spectra. Here, 
the OWC models were constructed in each of the sample 
shape as well as the model established using all sample 
data.

Figure 5 shows the 2D images of R between CNF addi-
tion ratio and the raw absorbance quotients of all wave-
lengths combination. In the 2D image of all samples, 
wavelengths of 1200, 1400, and 1700–2100 nm were used 
for one of the wavelength combinations, resulting in high 
R (Fig. 5a). On the other hand, the R of the higher 0.8 was 
found in many combinations by the sample shape classi-
fied models (Fig. 5b, c).

The results of the OWC regression models of each 
sample shape are shown in Table  3. R2, SEP, and RPDP 
of the OWC model of all samples were 0.93, 1.11, and 

Table 2  The results of the partial least-squares (PLS) regression model for estimating CNF addition ratio using SNV-NIR spectra

Factor: the optimum number of PLS factors, R2: coefficient of determination, SECV: standard error of cross-validation, RPDV: ratio of performance to standard deviation 
of cross-validation, SEP: standard error of prediction, RPDP: ratio of performance to standard deviation of prediction

Data Calibration set Test set

Factor R2 SECV RPDV R2 SEP RPDP

CNF addition ratio (wt %) 3 0.96 0.89 5.42 0.97 0.66 6.55
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Fig. 5  The 2D images of the regression coefficient (R) between CNF addition ratio and the raw absorbance quotients of all wavelengths 
combination ( tij ): a all, b injection shape, and c film shape samples. The details of sample conditions and tij are shown in Table 1 and Eq. (1), 
respectively. The y and x axis show the wavelengths i and j in Eq. (1)

Table 3  The result of optimal wavelength combination (OWC) regression models for each sample shape

OWC optimal wavelength combination, N number of samples, R2 coefficient of determination, SEM standard error of OWC model, RPDM; ratio of performance to 
standard deviation of OWC model, SEP standard error of prediction, RPDP ratio of performance to standard deviation of prediction

CNF addition ratio 
(%)

Calibration set Test set

OWC N R2 SEM RPDM N R2 SEP RPDP

All 1418/1220 105 0.97 0.84 5.74 51 0.93 1.11 3.87

Injection 1518/1310 81 0.99 0.10 26.5 43 0.99 0.11 24.7

Film 1468/1362 24 0.99 0.29 25.8 8 0.99 0.44 17.8
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3.87, respectively. Because the RPD value is from 2.5 to 
5, the model cannot be applied to the quality control in 
product line; however, it has a certain accuracy. Com-
pared to the PLS model (Table  2), the RPD value was 
lower, whereas overfitting did not occur. Furthermore, 
because a 95% reliable section of this model was ± 1.57, it 
was able to estimate a CNF addition ratio with about 2% 
accuracy as well as the PLS model. In the model of injec-
tion shape samples, R2, SEP, and RPDP were 0.99, 0.11, 
and 24.7, respectively. On the other hand, in the model 
of film shape samples, R2, SEP, and RPDP were 0.99, 0.44, 
and 17.8, respectively. Although the sample number of 
films was not enough, it is assumed that the OWC model 
of the film could predict CNF addition ratio with less 
than 1 wt% CNF accuracy, because the 95% reliable sec-
tion of the film samples model was 0.62 in the test set in 
this study. Therefore, if it is possible to classify the sam-
ple shapes before the analysis, and the OWC model can 
predict CNF addition ratio of CNF/PP composites of less 
than 1% accuracy.

The OWCs in injection, film, and combined sample 
models were 1518/1310, 1468/1362, and 1418/1220 nm, 
respectively. Looking at the optimal wavelengths of all 
the sample models, 1418 nm appeared between the com-
bination of the CH stretching vibration of 1410 nm and 
the CH deformation vibration and the associated OH 
(1435–1480  nm). The other (1210  nm) was the second 
overtone of the CH symmetric stretching vibration. The 
all sample models obtained the highest R2 for the com-
bination of the peaks related to CNF and PP as expected. 
The OWC in the injection sample model was observed 
in the combination of the wavelengths of CNF-derived 
absorption band (1500–1595 nm, intermolecular hydro-
gen bonding, associated OH and without absorption 
band. The film samples model was found in the combi-
nation of wavelengths of CNF-derived absorption band 
(1435–1480  nm) and no absorption band. In the wave-
lengths without chemical bands (1310, 1362  nm), the 
baseline significantly varied due to change in CNF addi-
tion ratio (Fig.  2). It is thought that nonchemical band 
wavelength became the best-contributed wavelength on 
these models to separate sample shape, because the effect 
of variation of NIR ray inside the sample is enhanced.

Conclusion
This study aimed to propose an effective and efficient 
method to predict CNF content of CNF/PP composites 
using NIR spectroscopy. Therefore, the effect of CNF 
type, sample shape and CNF addition ratio on NIR spec-
tra was evaluated. The results of PCA suggest that CNF 
addition ratio and sample shape could be expressed by 
the PC1 and PC2 scores, which are related to the chemi-
cal components of PP and CNF complexly. Furthermore, 

the PLS regression model was able to predict the CNF 
addition ratio with about 2.0% accuracy regardless of 
CNF type and sample shape in this study. Furthermore, 
even though the OWC regression model of all samples is 
not sufficient for quality control, it has the same level of 
sorting accuracy as the PLS regression model. Thus, it is 
found that the OWC linear regression drawn through all 
sample data can be used to develop a simpler prediction 
model with similar prediction accuracy of the PLS model. 
If the sample shapes can be classified before the analysis, 
the OWC model is able to predict CNF addition ratio of 
CNF/PP composites with a better accuracy than 1 wt%.

They are useful results to predict the CNF addition 
ratio of CNF/PP composites which have higher added 
value than other plastics effectively and efficiently. In 
future studies, it is required to evaluate the effect of 
sample shapes, surface roughness, CNF types, CNF 
aggregation, CNF dispersion, and resin types and these 
combinations for putting into use.
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