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Abstract 

Exudates are involved in the defense mechanism of trees; they could work against insects or microorganisms through 
a physical or chemical system. The main components of exudates are terpenoids. This study identified the main 
compounds of exudates from 13 conifers of Taiwan using gas chromatogram–mass spectrometry (GC–MS) and 
spectroscopic analysis. The results revealed that the main volatiles were α‑pinene, β‑ocimene, β‑pinene, sabinene, and 
caryophyllene. On the other hand, the main nonvolatile compounds were diterpenoids, which were classified into 
three skeletons (abietane‑, labdane‑, and pimarane‑types). Among these, abietane‑type presented in Pinaceae and in 
most of Cupressaceae; labdane‑type presented in Pinaceae and in all of Cupressaceae and Araucariaceae; pimarane‑
type existed in both Pinaceae and Cupressaceae. Furthermore, the epigenetics of conifers analysis results by GC–MS 
and heteronuclear single quantum coherence (HSQC) of nuclear magnetic resonance (NMR) fingerprints were similar 
to traditional taxonomy classification; it indicated that exudates chemotaxonomy by using GC–MS and HSQC profil‑
ing is a useful technology to classify the conifers. Besides, the exudates of Pinus elliottii, Pinus taiwanensis, Calocedrus 
macrolepis and Chamaecyparis formosensis possessed the strong antifungal activity. For white‑rot fungus, Trametes 
versicolor, Pinus morrisonicola, Chamaecyparis obtusa, and Araucaria heterophylla exhibited the higher antifungal index. 
For brown‑rot fungus, Laetiporus sulphureus, Pinus elliottii, Pinus morrisonicola, and Chamaecyparis formosensis revealed 
a good antifungal activity.
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Introduction
Exudates are a constitutive defense system of conifers 
against insects or pathogens [1, 2]. The main compo-
sitions of resin are sesquiterpenoids and diterpenoids 
in conifers [3–7]. The resin will exude when coni-
fers attacked by insects; it repels insects by intoxica-
tion and obstruction mechanism. On the other hand, 
volatile compounds of exudates contribute the indirect 
defenses against herbivores, and nonvolatile diterpe-
noids provide direct protection through the formation of 

lasting physical barriers at the point of insect attack [8, 
9]. Regarding the classification of tree exudates, which 
could be classified into resin, gum, kino, latex, manna, 
amber, balsam, maple sugar, and crystalline compounds 
[10]. Conifers contain richness resins in the resin ducts 
or blisters; it secretes after mechanical injures or attacked 
by insects or pathogens [11–13].

Because tree exudates have high application value in 
medicine and industry, the bioactivities investigation 
for exudates is also a fascinating topic attracting many 
researchers. Several bioactivities of exudates have been 
proved, for example, anti-oxidative and anti-inflamma-
tory activities, cytotoxicity, antimicrobial activity, cen-
tral nervous system diseases regulation, cardiovascular 
diseases prevention, α-glucosidase inhibitory activity, 
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wound-healing activity, gastroprotective, antifungal 
activity, and hepatoprotective activity [14–35]. Some tree 
exudates possessed unique flavors, such as frankincense 
and myrrh, which are famous fragrances since ancient 
times [36].

In this study, the metabolite fingerprints of the conifer 
exudates were established by gas chromatogram–mass 
spectrometry (GC–MS) and nuclear magnetic resonance 
(NMR) analysis to characterize the composition and clas-
sification of exudates of 13 conifers grown in Taiwan. 
Although NMR or GC–MS techniques have been used 
to analyze the composition of exudates, it did not obtain 
enough data to decipher their chemotaxonomy as well 
as the major compounds in the exudates [37–41]. Our 
research revealed that epigenetics of conifers analysis 
by metabolomic analysis strategy and proved that exu-
dates chemotaxonomy by using GC–MS and 2D-NMR 
metabolites profiling is a useful technique to classify 
the conifers. It is the first time to identify the significant 
compounds of the conifers and classify them using two-
dimensional (2D) heteronuclear single-quantum coher-
ence (HSQC) spectral analysis. In the meantime, the 
antifungal activity of exudates was also examined in this 
study.

Materials and methods
Plant materials
Exudates of conifers were collected at the Campus of 
National Chung Hsing University (NCHU) and Huisun 
Experimental Forest Station, located at the central of Tai-
wan, in July 2018. Totally 13 exudates of conifers were 
collected in this study, including Pinus elliottii (P. elliot-
tii), Pinus insularis (P. insularis), Pinus taiwanensis (P. 
taiwanensis), Pinus morrisonicola (P. morrisonicola), 
Pseudotsuga wilsoniana (P. wilsoniana), Cunninghamia 
lanceolata (C. lanceolate), Cunninghamia konishii (C. 
konishii), Chamaecyparis formosensis (C. formosensis), 
Chamaecyparis obtusa (C. obtusa), Calocedrus mac-
rolepis (C. macrolepis), Agathis dammara (A. dammara), 
Araucaria cunninghamii (A. cunninghamii), and Arau-
caria heterophylla (A. heterophylla). One exudates of 
broadleaf tree Liquidambar formosana (L. formosana). 
All the trees were identified by Prof. Yen-Hsueh Tseng 
(Department of Forestry, NCHU), and they were healthy 
trees. The conifers sampled are all planted trees, with an 
age of 30–40  years and the DBH were between18 and 
62 cm in diameter (Table 1).

The exudates were collected by first creating a 5-cm 
wounding site on the tree trunk with a scraping cutter, 
the exudates that naturally exuded from wounding site 
after 1  day, and then was collected directly in a sample 
vial, and then dissolved in ethyl acetate (EA), then used 
the 0.45-micrometer filter to remove any particulate 

matter. The exudates were dried by  N2, and stored at dark 
and frozen stored (4 °C) until study.

Headspace solid‑phase microextraction/GC–MS analysis
To obtain and analyze of complete volatile compounds of 
exudates, the solid-phase microextraction (SPME) tech-
nique was performed to collect the volatile compounds. 
A SPME holder and carboxen-polydimethylsiloxane 
(75  μm) were purchased from Supelco Co. (Bellefonte, 
USA). Before using, SPME fibers were conditioned 
by heating in a hot injection port of a GC at 250  °C for 
20  min to remove contaminants. The exudates were 
placed into a 20-mL sample vial sealed with the parafilm. 
The volatile compounds were analyzed by ITQ 900 mass 
spectrometer coupled with DB-5MS column. The tem-
perature program was as follows: 40  °C for 2  min, then 
increased by 4  °C   min−1 to 100  °C and then increased 
10 °C  min−1 to 280 °C hold for 5 min. The other param-
eters were injection temperature, 240 °C; ion source tem-
perature, 200  °C; EI, 70 eV; carrier gas, He 1 mL   min−1 
and mass scan range 40–600  m/z. The volatile com-
pounds were identified by Wiley/NBS Registry of Mass 
spectral databases (V. 8.0), National Institute of Stand-
ards and Technology (NIST) Ver. 2.0 GC–MS libraries, 
and the Kovats indices were calculated for all volatile 
constituents using a homologous series of n-alkanes  C9–
C24. The major components were identified by co-injec-
tion with standards (wherever possible).

Table 1 The information of exudate‑sampling trees in this study

a Campus: The main campus of National Chung-Hsing university, the location is 
at Taichung City, Taiwan
b Experimental Forest: Huisun Experimental Forest Station of National Chung-
Hsing University, which located at the central of Taiwan, the altitude is about 
800 m

Tree Location Age (years) DBH (cm)

Pinus elliottii Campusa 30 28

Pinus insularis Campus 35 58

Pinus taiwanensis Experimental  forestb 35 62

Pinus morrisonicola Experimental forest 35 60

Pseudotsuga wilsoniana Experimental forest 35 61

Cunninghamia lanceo-
lata

Experimental forest 35 45

Cunninghamia konishii Experimental forest 35 43

Chamaecyparis formo-
sensis

Experimental forest 40 37

Chamaecyparis obtusa Experimental forest 40 38

Calocedrus macrolepis Campus 30 18

Agathis dammara Campus 30 45

Araucaria cunninghamii Campus 30 49

Araucaria heterophylla Campus 30 48

Liquidambar formosana Experimental forest 30 48
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Extraction and isolation
The exudates of A. cunninghamii, C. macrolepis, C. for-
mosensis, and P. taiwanensis were selected to purify and 
identify the major compounds in exudates. The exudates 
were chromatographed over silica gel eluted with n-hex-
ane and gradient of n-hexane–EtOAc (ethyl acetate). The 
eluent was collected in constant volumes, and combined 
into five fractions based on the results of thin-layer chro-
matography (TLC) analysis. Each fraction was further 
separated by high-performance liquid chromatography 
(HPLC) (1100 Series, Agilent, Santa Clara, California, 
U.S.) using a normal-phase column (250 × 10 mm, 5 μm, 
Phenomenex Co., Washington, D.C., U.S.). The structures 
of compounds were elucidated and confirmed by spec-
troscopic analysis. The 1H-NMR spectra of compounds 
1–22 are shown in the supplementary data (Additional 
file 1: Fig. S1–S22).

NMR analysis
The NMR spectra were obtained using a Bruker Avance 
III-400 NMR spectrometer. For HSQC, approximately 
20 mg of the exudate was dissolved in 600 μL of  CDCl3 
containing tetramethylsilane (TMS), and the solution 
was loaded into 5-mm NMR tube. Spectra were recorded 
with standard pulse sequences of the instrument at 300 K 
without spinning. On the X-axis (1H axis) of HSQC was 
divided into 10 divisions from 10 to 1  ppm named 1 to 
10; Y-axis (13C axis) was divided 16 divisions from 0 to 
160 ppm named A to P. Thus, the HSQC spectrum was 
divided into A1 to P10 areas (Fig. 1).

Antifungal assay
The antifungal assay was performed in this study to eval-
uate the antifungal activity of exudates and ferruginol. 
Two fungal strains were used, namely Trametes versi-
color (L. ex Fr.) Quel. (BCRC 35253, Bioresource Collec-
tion and Research Center, Hsinchu city, Taiwan) and 
Laetiporus sulphureus (B. ex Fr.) Bond (BCRC 35305). 
Antifungal assays were performed three times and the 
data were averaged. Exudates were added to sterilized 
potato dextrose agar (PDA) to give 200 ppm concentra-
tions of extractives. The testing plates were incubated at 
27 ± 2 °C. When the mycelium of fungi reached the edge 
of the control plate the antifungal index was calculated as 
follows: antifungal index (%) = (1 − Da/Db) × 100, where 
Da: diameter of growth zone in the experimental dish 
(cm), Db: diameter of growth zone in the control dish 
(cm).

Data analyses
Cluster analyses and principal components analy-
ses (PCA) were performed with MVSP (Multi-Variate 

Statistical Package, V3.13  m) program to evaluate the 
similarity of fragrance compounds emitted from conifer-
ous exudates.

Results and discussion
Yield of exudate
Exudates of Pinaceae and C. macrolepis were light-yellow 
liquid, Araucariaceae and genus Cunninghamia were 
milky white liquid, genus Chamaecyparis and L. for-
mosana were light-yellow solid. Exudates of Araucari-
aceae, genus Cunninghamia and Pinus could be collected 
more than 1000 mg/day, Cupressaceae and P. wilsoniana 
were 300–500 mg/day.

Volatile compounds identification in exudates
Table  2 shows the analysis results of volatiles emitted 
from the conifer exudates. Although contents and com-
positions of volatiles were various in different conifers, 
the dominant compounds were monoterpenoids and 
sesquiterpenoids. Based on the results obtained in this 
study, the most abundant volatiles in conifer exudates 
were α-pinene, β-ocimene, β-pinene, sabinene, and 
caryophyllene. The abundant volatiles in Pinaceae were 
α-pinene and sabinene; however, α-pinene and β-pinene 
were the abundant compounds in Cupressaceae. Regard-
ing Araucariaceae, the molecular weight of volatiles emit-
ted from A. heterophylla was higher than others; most of 
them were sesquiterpenoids. However, the dominant vol-
atiles in A. cunninghamii and A. dammara were α-pinene 
and β-ocimene. Caryophyllene was abundant in genus 
Cunninghamia. Multivariate statistical analysis was 

Fig. 1 HSQC NMR spectrum of the Cunninghamia konishii Hayata 
exudates
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performed to compare the degrees of similarity of the 
volatile composition from conifer (Fig. 2). Exception was 
C. obtusa, which was classified into the Araucaria group 

by volatiles, because it had higher β-ocimene. Results 
from other tree species analysis are consistent with the 
traditional (morphology) taxonomy results. The results 

Table 2 The volatile organic compounds of exudates

A1 Agathis dammara, A2 Araucaria cunninghamii, A3 Araucaria heterophylla, C1 Calocedrus macrolepis, C2 Chamaecyparis formosensis, C3 Chamaecyparis obtuse, C4 
Cunninghamia konishii, C5 Cunninghamia lanceolata, P1 Pinus elliottii, P2 Pinus insularis, P3 Pinus morrisonicola, P4 Pinus taiwanensis, P5 Pseudotsuga wilsoniana

KI Kovats retention index on DB-5MS column in reference to n-alkanes

MS the mass spectrum in NIST and Wiley libraries and in the literature

ST standard compounds

t trace, concentration < 0.1%

Constituent KI Contents (%) Identification

Araucariaceae Cupressaceae Pinaceae

A1 A2 A3 C1 C2 C3 C4 C5 P1 P2 P3 P4 P5

Tricyclene 906 ‑ ‑ ‑ 0.1 ‑ ‑ ‑ ‑ ‑ ‑ t ‑ ‑ MS, KI

α‑Thujene 921 2.7 0.2 ‑ 0.3 0.1 t 0.1 0.1 0.1 0.3 t 0.1 0.6 MS, KI, ST

α‑Pinene 935 44.0 21.7 0.2 65.7 74.7 2.8 54.1 64.0 50.7 59.6 38.7 88.6 70.0 MS, KI, ST

Camphene 950 2.1 0.4 ‑ 2.6 0.4 0.1 0.4 0.4 1.0 1.0 0.7 1.5 2.1 MS, KI, ST

Sabinene 977 4.6 1.5 t 1.3 2.2 0.2 1.6 1.7 34.2 1.7 15.3 4.0 2.4 MS, KI

β‑Pinene 989 1.9 0.6 ‑ 5.9 9.1 36.3 4.7 12.4 1.9 1.1 3.7 1.0 2.0 MS, KI, ST

α‑Phellandrene 1004 ‑ 0.3 ‑ ‑ 0.2 0.2 ‑ ‑ 0.1 1.1 0.1 0.1 0.1 MS, KI, ST

3‑Carene 1007 ‑ ‑ ‑ 11.4 0.1 ‑ 0.3 0.4 0.1 1.1 0.1 0.1 0.1 MS, KI, ST

α‑Terpinene 1016 0.2 0.1 ‑ 0.1 0.1 1.3 0.1 0.1 t 0.2 0.2 t 0.1 MS, KI, ST

p‑Cymene 1023 0.4 0.5 ‑ 0.4 0.6 2.1 0.5 0.9 0.1 0.2 0.1 t 0.2 MS, KI, ST

β‑Ocimene 1029 37.8 4.0 t 2.8 3.1 19.3 0.8 2.1 1.8 ‑ 1.6 1.0 7.8 MS, KI, ST

β‑Phellandrene 1031 ‑ ‑ ‑ 1.0 2.2 ‑ 1.3 2.4 1.6 33.0 0.7 0.7 ‑ MS, KI, ST

γ‑Terpinene 1057 0.3 ‑ ‑ 0.1 0.1 1.0 0.1 0.2 t 0.1 0.1 t 0.1 MS, KI

Terpinolene 1084 0.4 0.1 ‑ 0.8 2.0 25.0 0.1 0.3 0.2 0.2 0.2 0.1 0.4 MS, KI, ST

p‑Cymenene 1087 0.2 ‑ ‑ 0.2 0.3 3.9 t 0.1 t t ‑ t t MS, KI

Estragole 1196 0.1 ‑ ‑ 0.1 0.1 ‑ ‑ ‑ 0.4 0.9 t ‑ 0.1 MS, KI

Borneol 1284 0.1 ‑ ‑ 0.2 0.7 0.3 0.2 0.5 ‑ t ‑ ‑ 2.8 MS, KI, ST

δ‑Elemene 1336 ‑ ‑ 0.9 t ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ t MS, KI

α‑Cubebene 1350 0.1 ‑ 1.4 2.2 ‑ ‑ t ‑ ‑ t ‑ 0.1 0.1 MS, KI

Ylangene 1372 ‑ ‑ 1.6 0.1 ‑ t t ‑ ‑ ‑ ‑ t 0.1 MS, KI

α‑Copaene 1380 0.1 4.6 49.0 1.7 ‑ 0.1 t ‑ ‑ ‑ t 0.1 0.5 MS, KI, ST

β‑Cubebene 1389 ‑ ‑ 0.9 0.1 ‑ ‑ 0.5 t ‑ ‑ ‑ ‑ 0.2 MS, KI, ST

α‑Gurjunene 1404 ‑ ‑ 3.1 t ‑ ‑ 0.1 t ‑ ‑ ‑ t ‑ MS, KI

Caryophyllene 1412 t ‑ ‑ ‑ ‑ ‑ 26.8 11.2 2.4 ‑ ‑ 2.4 3.0 MS, KI, ST

β‑Gurjunene 1435 ‑ 1.8 0.3 ‑ ‑ ‑ 0.1 ‑ ‑ ‑ ‑ ‑ ‑ MS, KI

Aromadendrene 1441 ‑ 1.0 ‑ ‑ ‑ ‑ 0.2 ‑ ‑ ‑ ‑ ‑ 0.1 MS, KI

α‑Guaiene 1448 ‑ 0.1 0.7 0.1 1.5 0.1 0.6 0.3 ‑ ‑ ‑ ‑ 0.6 MS, KI

Alloaromadendrene 1453 ‑ 0.8 ‑ ‑ ‑ 0.1 ‑ ‑ 0.5 ‑ ‑ ‑ 0.2 MS, KI

γ‑Murrolene 1462 ‑ 0.1 5.1 0.1 ‑ 0.2 0.5 0.1 ‑ ‑ ‑ ‑ 0.3 MS, KI, ST

Germacrene D 1469 t 0.1 2.0 ‑ ‑ 0.2 ‑ ‑ ‑ ‑ ‑ ‑ 2.5 MS, KI

β‑Chamigrene 1475 ‑ 0.6 ‑ ‑ ‑ ‑ 2.8 0.3 ‑ ‑ ‑ ‑ 0.2 MS, KI

Valencene 1480 ‑ 1.0 2.7 0.3 ‑ 0.3 2.8 0.4 t ‑ ‑ ‑ 0.4 MS, KI

γ‑Cadinene 1517 ‑ 0.1 1.4 0.2 ‑ 0.1 ‑ ‑ ‑ ‑ ‑ ‑ 0.3 MS, KI

δ‑Cadinene 1521 ‑ 0.2 10.1 0.7 ‑ 0.4 ‑ ‑ 0.1 ‑ ‑ ‑ 0.7 MS, KI

L‑Calamenene 1525 ‑ 0.1 2.2 0.4 ‑ 0.3 0.1 t ‑ ‑ ‑ ‑ 0.3 MS, KI

α‑Cadinene 1537 ‑ ‑ 1.5 0.2 ‑ t ‑ ‑ ‑ ‑ 0.1 ‑ 0.1 MS, KI, ST

Total identified (%) 95.0 39.9 83.1 99.1 97.5 94.3 98.8 97.9 95.2 99.9 64.6 99.8 98.4
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obtained from this study show that chemotaxonomy has 
considerable reference value.

Identification of nonvolatile compounds in exudates
To understand the skeletons of the main constituents in 
the exudates, four conifers, including A. cunninghamii, 
C. macrolepis, C. formosensis, and P. taiwanensis., with 
higher among of exudates were selected for the separa-
tion and identification of the compounds. After spectral 
analysis, 22 compounds (Fig.  3) were identified from 
exudates of A. cunninghamii, C. macrolepis, C. formosen-
sis, and P. taiwanensis. All of these compounds of exu-
dates were diterpenoids, including isocupressic acid (1), 
acetyl isocupressic acid (2), 15-hydroxy-8,13-labdadien 
(3) [42], 15-hydroxy-8,13-labdadien-19-carbonsaeure 
(4), 15-acetoxy-8,13-labdadien-19-oic acid (5), 8,13-lab-
dadien-15,19-diol (6), 15-hydroxy-8,13-labdadien-19-ol 
(7), 15-hydroxy-8,13-labdadien-19-al (8), 15-acetoxy-
8,13-labdadien-19-al (9) [43], ferruginol (10) [44], 
6α-hydroxysugiol (11) [45], trans-communic acid (12) 
[44], isopimarol (13) [46], agathadiol (14) [44], 13-epi-
cupressic acid (15) [47], 8,15-isopimaradien-19-al (16), 
8,15-isopimaradien-19-oic acid (17), 8,15-isopimaradien-
19-ol (18) [48], trans-communal (19), trans-communol 
(20), dehydroabietic acid (21) [44], isopimaric acid (22), 
respectively. The 1H-NMR spectra of compounds 1 to 11 
are shown in Additional file  1: Figs. S1–S22. Regarding 
the skeletons of the compounds identified from exudates, 
they could be classified into three types, namely abie-
tane-, labdane-, and pimarane-types. The compound 1–9 
were isolated from the exudates of A.c (Araucariaceae); 
compounds 10–13 were isolated from the exudate of 

C. macrolepis (Cupressaceae); compounds 1, 2, 5, 14, 
and 15 were isolated from the exudate of C. formosensis 
(Cupressaceae); compounds 12 and 16–20 were isolated 

Fig. 2 Epigenetics of conifers relationship of 13 conifers grown in Taiwan by GC–MS analysis of volatile constituents from exudates

1: R = OH
2: R = OAc

3: R = CH3; R’ = OH
4: R = COOH; R’ = OH
5: R = COOH; R’ = Oac
6: R = CH2OH; R’ = OH

7: R = CH2OH; R’ = Oac
8: R = CHO; R’ = OH
9: R = CHO; R’ = OAc

10 11 12 13

14 15

16: R = CHO
17: R = COOH
18: R = CH2OH

19: R = CHO
20: R = COOH
21: R = CH2OH

22

Fig. 3 Compounds identified from exudates of conifers in this study



Page 6 of 10Tsao et al. Journal of Wood Science           (2022) 68:46 

from the exudate of C. lanceolate (Cupressaceae); com-
pounds 21 and 22 isolated from the exudate of P. taiwan-
ensis (Pinaceae).

HSQC analysis of exudates of conifer
The main compounds of conifer exudates are diter-
penoids [3–7], and most of them belong to abietane-, 
labdane-, and pimarane-types diterpenoids. The dit-
erpenoids of the above three types of skeletons have 
their own special signals in the NMR spectrum. For the 
abietane-type diterpenoid, the NMR signals are at δC 
120–150 ppm and δH 6.0–8.0 ppm, represented the car-
bon and proton characteristic signals at benzene ring; 
and signals at δC 20–30  ppm and δH 3.0–3.5  ppm is an 
isopropyl absorption peaks at C15 of the benzene ring. 
According to the above information, special cross-peak 
signals of abietane-type in HSQC spectrum were at 
M3-4, N3-4 or O3-4 coupled with C7. Consideration of 
labdane-type diterpenoids, two double bonds are at C-8 
and C-13, which NMR signals were at δC 100–150 ppm 
and δH 4.0–7.0 ppm. According to the above information, 
cross-peak signals of labdane-type were shown at E-F6 
coupled with L-M5 or N5 coupled with O4, and some-
times the signals were presented at K-L6. The third skel-
eton, pimarane-type diterpenoids, an end double bond is 
at C-16, the NMR signal are at δC 100–120, 140–150 ppm 
and δH 4.0–6.0 ppm. According to the above information, 
characteristic cross-peak signals of pimarane-type diter-
penoids are at K-L6 coupled with O5.

The HSQC analysis spectra are shown in Additional 
file  1: Figs. S23–S36. The results revealed that the 
exudates of P. elliottii, P. insularis, P. morrisonicola, 
P. taiwanensis, P. wilsoniana, C. obtusa, C. formosen-
sis, and C. macrolepis contained the abietane-type dit-
erpenoids; the exudates of P. elliottii, P. insularis, C. 
obtusa, C. formosensis, C. macrolepis, C. lanceolate, 
C. konishii, A. cunninghamii, A. heterophylla, and A. 
dammara contained the labdane-type diterpenoids; 
the exudates of P. elliottii, P. insularis, P. taiwanensis, 
C. obtuse, C. formosensis, C. macrolepis, C. lanceo-
late, C. konishii, A. cunninghamii and A. heterophylla 
contained the pimarane-type diterpenoids. Moreover, 
cross peaks in the HSQC spectra of exudates from 13 
conifers were the useful chemotaxonomic index for 
conifers classification. The cross peaks at C8, D8, K6, 
M3, M4, and M5 were presented in family Pinaceae 
(Fig.  4); H3, K4, K6, M5, N3, N5, O4, and O5 were 
in Cupressaceae (Fig.  5); and C8, F7, K6, L5, L6, M5, 
N4, N5, and O4 were presented in Araucariaceae 
(Fig.  6). PCA and cluster analysis were performed to 
detect the degrees of similarity of the compositions 
of the exudates analyzed. Three different groups can 
be identified in the loading plots of PCA 1 and PCA 

2 (Fig.  7), i.e., Pinaceae (blue triangle), Cupressaceae 
(green inverted triangle), and Araucariaceae (light blue 
square); an angiosperm species, L. formosana (Hama-
melidaceae), was used as an outer group. Figure  8 
shows the results of cluster analysis, it is obviously that 
all Pinus species were closer than others. Both species 
of Araucaria were similarly, and they were close to A. 
dammara, all of them are Araucariaceae. C. obtusa, 

Fig. 4 Cross‑peaks region of Pinaceae exudate in HSQC spectrum

Fig. 5 Cross‑peaks region of Cupressaceae exudate in HSQC 
spectrum
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C. formosensis, and C. macrolepis. were very close to 
each other. C. lanceolate and C. konishii were similarly, 
but they were closer to Araucariaceae than C. obtusa, 
C. formosensis, and C. macrolepis. (Cupressaceae). It 
might be the abietane type of diterpenoids were in C. 
obtusa, C. formosensis, C. macrolepis, but not in C. 
lanceolate, C. konishii. Besides, only P. elliottii and P. 
insularis (Pinaceae) had labdane-type diterpenoids, 
both of them were similar in cluster analysis.

Evaluation of antifungal activities
In the growth test of the white-rot fungus, T. versicolor, 
the mycelial growth period was 7 days after the inocu-
lum. As the results show in Table 3, C. obtusa, P. taiwan-
ensis, and P. elliottii exhibited the stronger antifungal 
activity. On the other hand, the exudates of P. wilsoniana, 
P. elliottii, and C. formosensis presented better antifungal 
activity against L. sulphureus (brown-rot fungus) than 
others. The results indicated Pinaceae and Cupressaceae 
had better antifungal activities, and according to HSQC 
analysis this two families had abietane-type diterpenoids, 
but not in others. The conclusion that abietane-type dit-
erpenoids have good antifungal activities is supported by 
some studies [49–52].

Conclusion
This study could provide reference information on coni-
fers’ epigenetics and evolutionary classification, and to 
explore whether their exudates have antifungal activ-
ity. The degrees of similarity of the volatile composition 
from conifers were like the morphology taxonomy. And 
we could know the dominant volatile compounds in 
exudates were α-pinene, β-ocimene, β-pinene, sabinene, 
and caryophyllene. The molecular weight volatiles were 
larger in Araucariaceae compared to the other two fami-
lies. However, using GC–MS was still not good to clas-
sify exudates of conifers, because C. obtusa was classified 
under the Araucaria group. To improve the method, we 
chose to classify exudates of conifers using HSQC. The 
result of spectral analysis was consistent with the mor-
phology taxonomy. It also could quickly identify the kind 
of diterpenoid skeleton (abietane-, labdane-, and pima-
rane-types). Finally, the exudates of conifers revealed 

Fig. 6 Cross‑peaks region of HSQC Araucariaceae exudate in HSQC 
spectrum

Fig. 7 PCA score plot based on signal regions of HSQC and grouped by families
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the antifungal activity. Exudates from C. obtusa, P. tai-
wanensis, and P. elliottii exhibited the stronger against 
white-rot fungal activity; P. wilsoniana, P. elliottii, and C. 
formosensis presented better antifungal activity against L. 
sulphureus (brown-rot fungus). The results of antifungal 
activities and HSQC analysis showed that abietane-type 
diterpenoids have good antifungal activity.
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Fig. 8 Epigenetics of conifers relationship of 13 conifers grown in Taiwan by HSQC analysis of exudates

Table 3 Antifungal index of exudates of conifers grown in 
Taiwan

* A1: Agathis dammara; A2: Araucaria cunninghamii; A3: Araucaria heterophylla; 
C1: Calocedrus macrolepis; C2: Chamaecyparis formosensis; C3: Chamaecyparis 
obtusa; C4: Cunninghamia konishii; C5: Cunninghamia lanceolata; P1: Pinus 
elliottii; P2: Pinus insularis; P3: Pinus morrisonicola; P4: Pinus taiwanensis; P5: 
Pseudotsuga wilsoniana

Antifungal index (%)

Conifers* Trametes versicolor Laetiporus 
sulphureus

A1 28.27 33.24

A2 39.02 20.83

A3 41.19 12.07

C1 19.46 11.65

C2 42.42 38.07

C3 61.74 34.28

C4 35.09 37.50

C5 34.23 29.83

P1 52.08 46.40

P2 44.60 30.11

P3 40.53 43.75

P4 53.13 35.23

P5 36.07 31.25

https://doi.org/10.1186/s10086-022-02056-z
https://doi.org/10.1186/s10086-022-02056-z
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spectrum of Agathis dammara. Fig. S34. HSQC spectrum of Araucaria cun‑
ninghamii. Fig. S35. HSQC spectrum of Araucaria heterophylla. Fig. S36. 
HSQC spectrum of Liquidambar formosana.
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