Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Durability of isocyanate resin adhesives for wood I: Thermal properties of isocyanate resin cured with water

Abstract

The thermal properties of isocyanate (IC) resin cured with water were studied using dynamic mechanical analysis (DMA) and Fourier transform infrared spectroscopy. The thermal properties of cured phenol formaldehyde (PF) resin were also studied for comparison purposes. The DMA specimens were prepared using a unique technique. The relation between the mechanical and chemical changes of the resin during DMA was clarified. The cured PF resin had better thermal stability than the IC resin cured with water. The improvement of thermal stability in cured IC resin by heat treatment was considered to be less effective. The effect of the heating rate on the mechanical properties was also investigated. The apparent activation energy in the thermal degradation of cured IC resin was calculated based on the results obtained.

References

  1. 1.

    Johns WE (1982) Isocyanates as wood binders: a review. J Adhesion 15:59–67

    CAS  Article  Google Scholar 

  2. 2.

    Steiner PR, Chow S, Vadja S (1980) Interaction of polyisocyanate adhesive with wood. Forest Prod J 30(7):21–27

    CAS  Google Scholar 

  3. 3.

    Weaver FW, Owen NL (1995) Isocyanate-wood adhesive bond. Appl Spectrosc 49:171–176

    CAS  Article  Google Scholar 

  4. 4.

    Taki K, Tomita B, Mizumzchi H (1983) Studies on aqueous vinyl polymer solution isocyanate adhesives. III. (in Japanese). Mokuzai Gakkaishi 29:145–152

    CAS  Google Scholar 

  5. 5.

    Lay DG, Cranley P (1994) Applications and developments of polyurethane adhesives. Adhesives Age 31(6):6–9

    Google Scholar 

  6. 6.

    Juliá J, Salvatella D, Lope J (1994) Aqueous polyurethane dispersions for adhesive applications. Adhesives Age 31(5):26–31

    Google Scholar 

  7. 7.

    Dieterich D (1981) Aqueous emulsions dispersions and solutions of polyurethanes; synthesis and properties. Prog Organic Coatings 9:281–340

    CAS  Article  Google Scholar 

  8. 8.

    Christenson CP, Harthcock MA, Meadows MD, Spell HL, Howard WL, Creswick MW, Guerra RE, Turner RB (1986) Model MDI/ butanediol polyurethanes: molecular structure, morphology, physical and mechanical properties. J Polym Sci (B) Polym Phys 24:1401–1439

    CAS  Article  Google Scholar 

  9. 9.

    Grassie N, Zulfiqar M (1978) Thermal degradation of the polyurethane from 1,4-butanediol and methylene bis(4-phenyl isocyanate). J Polym Sci Polym Chem Educ 16:1563–1574

    CAS  Article  Google Scholar 

  10. 10.

    Nakayama N, Ino T, Matsubara I (1969) Infrared spectra and structure of polyurethane elastomers from polytetrahydrofuran, diphenylmethane-4,4′-diisocyanate, and ethylenediamine. J Macromol Sci Chem A3:1005–1020

    Article  Google Scholar 

  11. 11.

    Luo N, Wang D-N, Ying S-K (1996) Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer 37:3577–3583

    Article  Google Scholar 

  12. 12.

    Camargo RE, Macosko CW, Tirrell M, Wellinghoff ST (1983) Hydrogen bonding in segmented polyurethanes: band assignment for the carbonyl region. Polymer Commun 24:314–315

    CAS  Article  Google Scholar 

  13. 13.

    Luo N, Wang D-N, Ying S-K (1996) Hydrogen bonding between urethane and urea: band assignment for the carbonyl region of FTIR spectrum. Polymer 37:3045–3047

    CAS  Article  Google Scholar 

  14. 14.

    Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Macromolecules 19:2149–2157

    CAS  Article  Google Scholar 

  15. 15.

    Elwell MJ, Ryan AJ, Grünbauer HIM, Van Lieshout HC (1996) FTIR study of reaction kinetics and structure development in model flexible polyurethane foam systems. Polymer 37:1353–1361

    CAS  Article  Google Scholar 

  16. 16.

    Coleman MM, Sobkowiak M, Pehlert GJ, Painter PC (1997) Infrared temperature studies of a simple polyurea. Macromol Chem Phys 198:117–136

    CAS  Article  Google Scholar 

  17. 17.

    Bailey FE Jr, Critchfield FE (1981) Chemical reaction sequence in the formation of water-blown, urethane foam. J Cell Plast 17:333–339

    CAS  Article  Google Scholar 

  18. 18.

    Born L, Hespe H (1985) On the physical crosslinking of amineextended polyurethane urea elastomers: a crystallographic analysis of bis-urea from diphenyl methane-4-isocyanate and 1,4-butane diamine. Coll Polym Sci 263:335–341

    CAS  Article  Google Scholar 

  19. 19.

    Beachell HC, Ngoc Son CP (1963) Color formation in polyurethanes. J Appl Polym Sci 7:2217–2237

    CAS  Article  Google Scholar 

  20. 20.

    Merton R, Lauerer D, Dahm M (1968) IR spectroscopic studies of urethane foam formation. J Cell Plast 4:262–275

    Article  Google Scholar 

  21. 21.

    Prister RD, Mcclusky JV, O'Neill RE, Turner RB (1990) FTIR: a probe into the reaction kinetics and morphology development of urethane foams. J Cell Plast 26:346–367

    Article  Google Scholar 

  22. 22.

    Teo L-S, Cem C-Y, Koo J-F (1997) Fourier transform infrared spectroscopy study on effect of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s. Macromolecules 30:1793–1799

    CAS  Article  Google Scholar 

  23. 23.

    Brunette CM, Hsu SL, MacKnight WJ (1982) Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers. Macromolecules 15:71–77

    CAS  Article  Google Scholar 

  24. 24.

    Luo N, Wang D-N, Ying S-K (1997) Hydrogen-bonding properties of segmented polyester poly(urethane urea) copolymer. Macromolecules 30:4405–4409

    Article  Google Scholar 

  25. 25.

    Bonart R (1979) Thermoplastic elastomers. Polymer 20:1389–1403

    CAS  Article  Google Scholar 

  26. 26.

    Furusho N, Komatsu T, Nakagawa T (1973) Study of thermal degradation of several polymers by torsional braid analysis. Nippon Kagaku Kaishi 94:1166–1174

    Article  Google Scholar 

  27. 27.

    Furusho N, Komatsu T, Nakagawa T (1975) A torsional braid analysis of polymethacrylates, polyacrylate, poly(vinyl alcohol), and their related polymers during the thermal degradation. Bull Chem Soc Jpn 48:396–402

    CAS  Article  Google Scholar 

  28. 28.

    Furusho N, Komatsu T, Nakagawa T (1975) The heating-rate dependence of the mechanical properties of several polymers at higher temperatures. Bull Chem Soc Jpn 48:1404–1410

    CAS  Article  Google Scholar 

  29. 29.

    Belyakov VK, Bukin II, Tarakanov OG, Berlin AA (1971) Several features of the thermal and thermaloxidative degradation of polyureas. Polymer USSR 13:1779–1798

    Article  Google Scholar 

  30. 30.

    Nielsen LE (1969) Cross-linking: effect on physical properties of polymers. J Macromol Sci Rev Macromol Chem C3(1):69–103

    Article  Google Scholar 

  31. 31.

    Hirai Y, Kubota Y, Matsumoto A (1993) Relationship between structure and physical properties of cured phenolic resins (in Japanese). Netsukokasei Jushi 14:196–201

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenji Umemura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umemura, K., Takahashi, A. & Kawai, S. Durability of isocyanate resin adhesives for wood I: Thermal properties of isocyanate resin cured with water. J Wood Sci 44, 204–210 (1998). https://doi.org/10.1007/BF00521964

Download citation

Key words

  • Isocyanate resin adhesives
  • Thermal properties
  • Dynamic mechanical analysis
  • Fourier transform infrared spectroscopy
  • Wood adhesives