Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Polyethylene degradation by lignin-degrading fungi and manganese peroxidase

Abstract

Degradation of high-molecular-weight polyethylene membrane by lignin-degrading fungi, IZU-154, Phanerochaete chrysosporium, and Trametes versicolor, was investigated under various nutritional conditions. IZU-154 showed the most significant polyethylene degradation among the three lignin-degrading fungi under nitrogen- or carbon-limited culture conditions. Furthermore, for T. versicolor and P. chrysosporium, the addition of Mn(II) into nitrogen- or carbon-limited culture medium enhanced polyethylene degradation. These results suggest that polyethylene degradation is related to ligninolytic activity of lignin-degrading fungi. Treatment of polyethylene membrane with partially purified manganese peroxidase (MnP) caused significant degradation in the presence of Tween 80, Mn(II), and Mn(III) chelator. This result demonstrates that MnP is the key enzyme in polyethylene degradation by lignin-degrading fungi.

References

  1. 1.

    Fuhs GW (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch Mikrobiol 39:374–422

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jen-hou L, Schwartz A (1961) Zum Verhalten von bakteriengemischen gegenüber polyäthylen verschiedenen mittleren Molekulargewichts. Kunststoffe 51:317–320

    Google Scholar 

  3. 3.

    Albertsson AC, Banhidi ZG (1980) Microbial and oxidative effects in degradation of polyethene. J Appl Polym Sci 25:1655–1671

    CAS  Article  Google Scholar 

  4. 4.

    Kashino Y, Nishida T, Takahara Y, Fujita K, Kondo R, Sakai K (1993) Biomechanical pulping using white rot fungus IZU-154. Tappi J 76:167–171

    CAS  Google Scholar 

  5. 5.

    Fujita K, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1991) Biobleaching of kraft pulp using white-rot fungus IZU-154. Tappi J 74:123–127

    CAS  Google Scholar 

  6. 6.

    Murata S, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1992) Chlorine-free bleaching process of kraft pulp using treatment with the fungus IZU-154. Tappi J 75:91–94

    CAS  Google Scholar 

  7. 7.

    Fujita K, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1993) Biobleaching of softwood kraft pulp with white rot fungus IZU-154. Tappi J 76:81–84

    CAS  Google Scholar 

  8. 8.

    Spadaro JT, Gold ME, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Joshi DK, Gold ME (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lee B, Pometto AL III, Fratzke A, Bailey TB Jr (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nishida T, Kashino Y, Mimura A, Takahara Y (1988) Lignin biodegradation by wood-rotting fungi: I. Screening of lignindegrading fungi. Mokuzai Gakkaishi 34:530–536

    Google Scholar 

  14. 14.

    Nishida T, Kashino Y, Katayama Y. Mimura A, Takahara Y (1989) Lignin biodegradation by wood-rotting fungi: II. Degradation of phenolic and nonphenolic β-O-4 lignin substructure compounds by fungus IZU-154. Mokuzai Gakkaishi 35:141–151

    Google Scholar 

  15. 15.

    Nishida T, Kashino Y, Katayama Y, Mimura A, Takahara Y (1989) Lignin biodegradation by wood-rotting fungi: III. Degradation of phenolic β-1 and biphenyl lignin substructure compounds by fungus IZU-154. Mokuzai Gakkaishi 35:152–157

    CAS  Google Scholar 

  16. 16.

    Nishida T (1989) Lignin biodegradation by wood-rotting fungi: IV. The effect of lignin biodegradation by the fungus IZU-154 on the enzymatic hydrolysis of wood. Mokuzai Gakkaishi 35:649–653

    CAS  Google Scholar 

  17. 17.

    Wolfenden BS, Willson RL (1982) Radical cations as reference chromogens in kinetics studies of one-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans 2:805–812

    Article  Google Scholar 

  18. 18.

    Paszcynski A, Huynh V-B, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–41

    Article  Google Scholar 

  19. 19.

    Lee SW, Edlin G (1985) Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmidcontaining Escherichia coli. Gene 39:173–180

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Katagiri N, Tsutsumi Y, Nishida T (1997) Biobleaching of softwood kraft pulp by white-rot fungi and its related enzymes. Mokuzai Gakkaishi 43:678–685

    CAS  Google Scholar 

  21. 21.

    Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    CAS  Article  Google Scholar 

  24. 24.

    Dodson PJ, Evans CS, Harvey PJ, Palmer JM (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyzes cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22

    CAS  Google Scholar 

  25. 25.

    Gold ME, Kuwahara M, Chin AA, Glenn JK (1984) Purification and characterization of extracellular H2O2-requiring diaryl propane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Johansson T, Nyman PO (1987) A manganese (II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. Acta Chem Scand 41:762–765

    Article  Google Scholar 

  27. 27.

    Kondo R, Harazono K, Sakai K (1994) Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol 60:4359–4363

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kondo R, Kurashiki K, Sakai K (1994) In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl Environ Microbiol 60:921–926

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes (vol 3). CRC, Boca Raton, FL, pp 1–35

    Google Scholar 

  30. 30.

    Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burd. Science 221:661–663

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Blanchette RA (1984) Manganese accumulation in wood decayed by white rot fungi. Ecol Epidemiol 74:725–730

    CAS  Google Scholar 

  32. 32.

    Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidase and manganese-dependent peroxidase from lignindegrading white rot fungi. Appl Environ Microbiol 56:210–217

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cui F, Dolphin D (1990) The role of manganese in model systems related to lignin biodegradation. Holzforschung 44:279–283

    CAS  Article  Google Scholar 

  34. 34.

    Glenn JK, Akileswaran L, Gold ME (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignindegrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bao W, Fukushima Y, Jensen KA Jr, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Nishida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iiyoshi, Y., Tsutsumi, Y. & Nishida, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44, 222–229 (1998). https://doi.org/10.1007/BF00521967

Download citation

Key words

  • Polyethylene
  • Biodegradation
  • Lignindegrading fungi
  • Manganese peroxidase
  • Ligninolytic activity