Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Possibility of grouping of Cyclobalanopsis species (Fagaceae) grown in Japan based on an analysis of several regions of chloroplast DNA


Four regions of chloroplast DNA were sequenced as a prospective genetic marker to identify Japanese representatives of Cyclobalanopsis: Quercus acuta, Q. sessilifolia, Q. salicina, Q. myrsinaefolia, Q. glauca, and Q. gilva. We found that Q. gilva was distinguished from other species based on both the trnL-trnF and trnT-trnL intergenic spacers. The evidence shows good coincidence with the fact that Q. gilva has several peculiar morphological features distinguishable from those of other species. There was no difference in trnL intron and matK. Both trnT-trnL and trnL-trnF intergenic spacers are capable of being used as genetic markers to identify Q. gilva among Cyclobalanopsis species.


  1. 1.

    Kitamura S, Murata G (1979) Coloured illustrations of woody plants of Japan (in Japanese), vol II. Hoikusha, Osaka

    Google Scholar 

  2. 2.

    Shimaji K (1962) Anatomical studies on the phylogenetic interrelationship of the genera in the Fagaceae. Bull Tokyo Univ For 57:1–60

    Google Scholar 

  3. 3.

    Sudo S (1959) Identification of Japanese hardwoods (in Japanese). Bull Gov For Exp Station 118:1–138

    Google Scholar 

  4. 4.

    Shiraishi S, Watanabe A (1995) Identification of chloroplast genome between Pinus densiflora SIEB. et ZUCC. and P. thunbergii PARL. based on the polymorphism in rbcL gene (in Japanese). J Jpn For Soc 77:429–436

    Google Scholar 

  5. 5.

    Shiraishi S, Isoda K, Watanabe A, Kawasaki H (1996) DNA systematical study on the Larix relicted at Mt. Manokami, the Zao Mountains (in Japanese). J Jpn For Soc 78:175–182

    Google Scholar 

  6. 6.

    Ohyama M, Baba K, Itoh T, Shiraishi S (1999) Polymorphism analysis of Fagaceae and DNA-based identification of Fagus species grown in Japan based on the rbcL gene. J Wood Sci 45:183–187

    CAS  Article  Google Scholar 

  7. 7.

    Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    CAS  Article  Google Scholar 

  8. 8.

    Neuhaus H, Link G (1987) The chloroplast tRNALys(UUU) gene from mustard. Curr Genet 11:251–257

    CAS  Article  Google Scholar 

  9. 9.

    Rosa JP, Harris SA, Farjon A (1995) Noncoding chloroplast DNA variation in Mexican pines. Theor Appl Genet 91:1101–1106

    Article  Google Scholar 

  10. 10.

    Badenes ML, Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90:1035–1041

    CAS  Article  Google Scholar 

  11. 11.

    Manos PS, Steele KP (1997) Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. Am J Bot. 84:1407–1419

    CAS  Article  Google Scholar 

  12. 12.

    Plunkett GM, Soltis DE, Soltis PS (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84:565–580

    CAS  Article  Google Scholar 

  13. 13.

    Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mot Biol Evol 11:769–777

    CAS  Google Scholar 

  14. 14.

    Johnson LA, Soltis DE (1994) matK sequences and phylogenetic reconstruction in Saxifragaceae. Syst Bot 19:143–156

    Article  Google Scholar 

  15. 15.

    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    CAS  Article  Google Scholar 

  16. 16.

    Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J Jpn Bot 70:328–331

    Google Scholar 

  17. 17.

    Okamoto M (1976) Seedling morphology of the Fagaceae (in Japanese). Bull Osaka Mus Nat Hist 30:11–18

    Google Scholar 

  18. 18.

    Okamoto M (1979) Quercus gilva, excavated in ancient human sites (in Japanese). Bull Osaka Mus Nat Hist 32:31–39

    Google Scholar 

  19. 19.

    Okamoto M (1991) Evolutionary trends in the inflorescences and cupules of the northern Fagaceae. Bull Osaka Mus Nat Hist 45:33–48

    Google Scholar 

  20. 20.

    Ferris C, Oliver RP, Davy AJ, Hewitt GM (1993) Native oak chloroplasts reveal an ancient divide across Europe. Mol Eco 2:337–344

    CAS  Article  Google Scholar 

  21. 21.

    Ferris C, Oliver RP, Davy AJ, Hewitt GM (1995) Using chloroplast DNA to trace postglacial migration routes of oaks into Britain. Mol Eco 4:731–738

    CAS  Article  Google Scholar 

  22. 22.

    Ferris C, King RA, Väinölä R, Hewitt GM (1998) Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80:584–593

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Motonari Ohyama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohyama, M., Baba, K. & Itoh, T. Possibility of grouping of Cyclobalanopsis species (Fagaceae) grown in Japan based on an analysis of several regions of chloroplast DNA. J Wood Sci 45, 498–501 (1999).

Download citation

Key words

  • Wood identification
  • Cyclobalanopsis
  • Chloroplast DNA