Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Mechanism of mercerization revealed by X-ray diffraction

Abstract

We studied the crystalline conversion of cellulose fiber from cellulose I to cellulose II (mercerization) by X-ray diffraction, focusing on the putative chain-polarity conversion from parallel to antiparallel. The structural change of Na-cellulose was examined during stepwise changes in NaOH concentration. Either Na-cellulose I or Na-cellulose II was formed depending on the initial NaOH concentration. Once formed, both structures were stable and did not inter-convert to each other when the NaOH concentration was changed. Such stability indicates that the parallel-to-antiparallel conversion is not likely to take place in the crystalline region of Na-cellulose. Regeneration of cellulose II from both forms of alkali cellulose proceeded with the formation of 0.44 nm lattice plane corresponding to the sheet of (1 ¯1 0) plane of cellulose II, showing that the molecular stacking due to van der Waals' interaction is the driving force of the formation of cellulose II. A mechanism was proposed whereby the geometry of the cellulose molecule allows close fitting of the hydrophobic faces only in the antiparallel arrangement, thus driving formation of the antiparallel structure of cellulose II.

References

  1. 1.

    Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857

    CAS  Article  Google Scholar 

  3. 3.

    Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    CAS  Article  Google Scholar 

  4. 4.

    Hayashi J, Yamada T, Kimura K (1976) The change of the chain conformation of cellulose from type I to II. Appl Polym Sci Appl Polym Symp 28:713–727

    CAS  Google Scholar 

  5. 5.

    Atalla RH (1983) The structure of cellulose: quantitative analysis by Raman spectroscopy. J Appl Polym Sci Appl Polym Symp 37:295–301

    CAS  Google Scholar 

  6. 6.

    Fink HP, Philipp B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I → II transition. J Appl Polym Sci 30:3779–3790

    CAS  Article  Google Scholar 

  7. 7.

    Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810

    CAS  Article  Google Scholar 

  8. 8.

    Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    CAS  Article  Google Scholar 

  9. 9.

    Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gessler K, Grauss N, Steiner T, Betzel C, Sandmann C, Saenger W (1994) Crystal structure ofβ-d-cellotetraose hemihydrate with implications for the structure of cellulose II. Science 266:1027–1029

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Raymond S, Heyraud A, Tran Qui D, Kvick Å, Chanzy H (1995) Crystal and molecular structure ofβ-d-cellotetraose hemihydrate as a model of celluose II. Marcromolecules 28:2096–2100

    CAS  Article  Google Scholar 

  12. 12.

    Raymond S, Kvick Å, Chanzy H (1995) The structure of cellulose II: a revisit. Macromolcules 28:8422–8425

    CAS  Article  Google Scholar 

  13. 13.

    Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    CAS  Article  Google Scholar 

  14. 14.

    Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations: could mercerized cellulose II be parallel? Macromolecules 29:5695–5699

    CAS  Article  Google Scholar 

  15. 15.

    Marhöfer RJ, Reiling S, Brickmann J (1996) Computer simulations of crystal structures and elastic properties of cellulose. Ber Bunsenges Phys Chem 100:1350–1354

    Article  Google Scholar 

  16. 16.

    Kim N-H, Sugiyama J, Okano T (1990) X-ray and electron diffraction study of Na-cellulose I: formation and its reconversion back to cellulose I. Mokuzai Gakkaishi 36:120–125

    CAS  Google Scholar 

  17. 17.

    Kim N-H, Sugiyama J, Okano T (1991) X-ray and electron diffraction study of Na-cellulose. I. The effect of washing temperature on the structure of Na-cellulose I. Mokuzai Gakkaishi 37:637–443

    CAS  Google Scholar 

  18. 18.

    Sonneveld EJ, Visser JW (1975) Automatic collection of powder data from photographs. J Appl Cryst 8:1–7

    Article  Google Scholar 

  19. 19.

    Sobue H, Kiessig H, Hess K (1939) Das System Cellulose — Natrium hydroxyd — Wasser in Abhängigkeit von der Temperatur. Z Physikal Chem 43:309–329

    Article  Google Scholar 

  20. 20.

    Yokota H, Sei T, Horii F, Kitamaru R (1990) 13C CP/MAS NMR study on alkali cellulose. J Appl Polym Sci 41:783–791

    CAS  Article  Google Scholar 

  21. 21.

    Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules 24:759–770

    CAS  Article  Google Scholar 

  22. 22.

    Nishimura H, Sarko A (1991) Mercerization of cellulose. 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778

    CAS  Article  Google Scholar 

  23. 23.

    Buleon A, Chanzy H (1978) Single crystals of cellulose II. J Polym Sci Polym Phys Educ 16:833–839

    CAS  Article  Google Scholar 

  24. 24.

    Helbert W, Sugiyama J (1998) High-resolution electron microscopy on cellulose II andα-chitin single crystals. Cellulose 5:113–122

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishiyama, Y., Kuga, S. & Okano, T. Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46, 452–457 (2000). https://doi.org/10.1007/BF00765803

Download citation

Key words

  • Cellulose
  • Mercerization
  • Crystal structure
  • Alkali-cellulose
  • X-ray diffraction