Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Fiber charge characteristics of pulp suspension containing aluminum sulfate

Abstract

Fiber charge characteristics of pulp suspensions containing aluminum sulfate were investigated with relation to adsorption behavior of aluminum components on the pulp fibers by streaming potential measurement using a particle charge detector, X-ray photoelectron spectroscopy, and X-ray fluorescence analysis. When aluminum sulfate was added to a pulp suspension prepared using deionized water, a streaming potential of the suspension went from negative to slightly negative according to the adsorption of aluminum components on the pulp fibers. Subsequent addition of a dilute NaOH solution to the suspension drastically cationized the fibers in the pH range of around 5 by predominant and homogeneous adsorption of cationic aluminum complexes on the fiber surfaces. However, the aluminum flocs that formed heterogeneously on the fiber surfaces at higher pH by further alkali addition made nearly no contribution to cationization of the fibers, although the abundant aluminum components were retained in the pulp sheets. Therefore, only aluminum cations adsorbed uniformly on the fiber surfaces perform well to control the charge properties of the pulp fibers at the wet end; and the preferential aluminum adsorption behavior on the fiber surfaces, by utilizing the required amounts of hydroxyl ions, probably accounts for the effective cationization of the fibers under acidic to neutral papermaking conditions.

References

  1. Reynolds WF, Linke WF (1963) The effect of alum and pH on sheet. TAPPI J 46:410–415

    CAS  Google Scholar 

  2. Strazdins E (1986) The chemistry of alum in papermaking. TAPPI J 69:111–114

    CAS  Google Scholar 

  3. Budd J, Herrington TM (1989) The adsorption of aluminum from aqueous solution by cellulose fibers. Colloids Surfaces 41:363–384

    Article  CAS  Google Scholar 

  4. Bottero J-Y, Fiessinger F (1989) Aluminum chemistry in aqueous solutions. Nordic Pulp Paper Res J 4:81–89

    Article  CAS  Google Scholar 

  5. Strazdins E (1989) Theoretical and practical aspects of alum use in papermaking. Nordic Pulp Paper Res J 4:128–134

    Article  CAS  Google Scholar 

  6. Arnson TR, Stratton RA (1983) The adsorption of complex aluminum species by cellulosic fibers. TAPPI J 66:72–75

    CAS  Google Scholar 

  7. Cordier DR, Bixler HJ (1987) Measurement of aluminum hydrolysis in the wet end. TAPPI J 70:99–102

    CAS  Google Scholar 

  8. Ödberg L, Barla P, G-Nordmark G (1995) Transfer of absorbed alum from cellulosic fibers to clay particles. J Pulp Paper Sci 21:J250-J254

    Google Scholar 

  9. Kalo M, Isogai A, Onabe F (1998) Adsorption behavior of aluminum compounds on pulp fibers at wet-end. J Wood Sci 44:361–368

    Article  Google Scholar 

  10. Kato M, Isogai A, Onabe F (1999) Factors influencing retention behavior of aluminum compounds on handsheets. J Wood Sci 45:154–160

    Article  CAS  Google Scholar 

  11. Kato M, Isogai A, Onabe F (2000) Studies on interactions between aluminum compounds and cellulosic fibers in water by means of27Al-NMR. J Wood Sci 46:310–316

    Article  CAS  Google Scholar 

  12. Farley CE (1992) Influence of dissolved ions on alum cationicity under alkaline papermaking conditions. In: Proceedings of the 1992 TAPPI papermakers conference, pp 267–273

  13. Senzyu R (1953) Untersuchung über lignin und Zellstoff. I. Eine neue bestimmungsmethode von ligninsulfosäure in sulfitablauge durch kolloidtitration (in German). Bull Chem Soc Jpn 26:143–147

    Article  Google Scholar 

  14. Wassmer KH, Schroeder U, Horn D (1991) Characterization and detection of polyanions by direct polyelectrolyte titration. Makromol Chem 192:553–565

    Article  CAS  Google Scholar 

  15. Tanaka H, Sakamoto Y (1993) Polyelectrolyte titration using fluorescent indicator. I. Direct titration of anionic and cationic polyelectrolytes with 10−4 N standard solutions. J Polym Sci Part A Polymer Chem 31:2687–2691

    Article  CAS  Google Scholar 

  16. Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. Pure Appl Chem A31:l-15

    Google Scholar 

  17. Miyanishi T, Motegi S (1997) Optimizing flocculation and drainage for microparticle systems by controlling zeta potential. TAPPI J 80:262–270

    CAS  Google Scholar 

  18. Shul'ga GM, Telysheva GM, Zezin AB (1997) Specific features of the interpolymer interaction between sodium lignosulfonate and poly(acrylic acid) in aqueous media. Polym Sci Ser A 39:1130–1134

    Google Scholar 

  19. Onabe F, Sauret G (1982) Evaluation du caractere ionique des agents de retentio par la méthode de dosage et comparaison avec la methode de streaming current detector (in French). Rev ATIP 36:213–223

    CAS  Google Scholar 

  20. Bley L (1992) Measuring the concentration of anionic trash — the PCD. In: Proceedings of 1992 paper technology, pp 32–37

  21. Sanders ND, Schaefer JH (1995) Comparing papermaking wet-end charge-measuring techniques in kraft and groundwood systems. TAPPI J 78:142–150

    CAS  Google Scholar 

  22. Kitaoka T, Isogai A, Onabe F (1994) Sulfate ion in acidic paper. Mokuzai Gakkaishi 40:563–564

    CAS  Google Scholar 

  23. Kitaoka T, Isogai A, Onabe F (1995) Sizing mechanism of emulsion rosin size-alum systems. I. Relationships between sizing degrees and rosin size or aluminium content in rosin-sized handsheets. Nordic Pulp Paper Res J 10:253–260

    Article  CAS  Google Scholar 

  24. Laine J, Stenius P, Carlsson G, Ström G (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1:145–160

    Article  CAS  Google Scholar 

  25. Ozaki Y, Sawatari A (1997) Surface characterization of a rosin sizing agent in paper by means of EPMA, ESCA and TOF-SIMS. Nordic Pulp Paper Res 1 12:260–266

    Article  CAS  Google Scholar 

  26. Chen SP, Tanaka H (1998) Surface analysis of paper containing polymer additives by X-ray photoelectron spectroscopy. I. Application to paper containing dry strength additives. J Wood Sci 44:303–309

    Article  CAS  Google Scholar 

  27. TAPPI Test Methods (1995) Freeness of pulp (Canadian standard method), T227 om-94

  28. TAPPI Test Methods (1995) Laboratory processing of pulp (beater method), T200 om-89

  29. TAPPI Test Methods (1995) Carboxyl content of pulp, T237 om-93

  30. TAPPI Test Methods (1995) Forming handsheets for physical tests of pulp, T205 sp-95

  31. Hattori T, Kawanishi T, Kato M (1994) Toluidine blue selective plasticized poly(vinyl chloride) membrane electrode for colloid titration. Bull Chem Soc Jpn 67:405–409

    Article  CAS  Google Scholar 

  32. Koubaa A, Riedl B, Koran Z (1996) Surface analysis of press dried-CTMP paper samples by electron spectroscopy for chemical analysis. J Appl Polym Sci 61:545–552

    Article  CAS  Google Scholar 

  33. Parks EJ, Hebert RL (1972) Thermal analysis of ion exchange reaction products of wood pulps with calcium and aluminum cation. TAPPI J 55:1510–1514

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Kitaoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitaoka, T., Tanaka, H. Fiber charge characteristics of pulp suspension containing aluminum sulfate. J Wood Sci 48, 38–45 (2002). https://doi.org/10.1007/BF00766236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00766236

Key words