Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Changes in levels of endogenous plant hormones in cambial regions of stems ofLarix kaempferi at the onset of cambial activity in springtime

Abstract

The total amounts of endogenous indole-3-acetic acid (IAA), cytokinins, and abscisic acid (ABA) were quantified by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) in cambial regions of the main stems ofLarix kaempferi during the spring season. During the sampling period, cambium in the dormant state entered the active meristematic state. The total amount of IAA did not change at the onset of cambial reactivation but increased when the active division of cambial cells became apparent. Four cytokinins —trans- andcis-ribosylzeatin (RZ),N 6-isopentenyladenine (iP),N 6-isopentenyladenosine (iPA) — were quantified, but no zeatin (Z) was detected. The total amount of the four cytokinins together and the total amount of isopentenyl-type cytokinins (iP and iPA) varied during the sampling period but did not appear to be specifically associated with cambial activity. The total amounts oftrans- andcis-RZ remained relatively constant during the sampling period, as did the total amount of ABA. The results suggest that there is little correlation between total amounts of endogenous plant hormones in the cambial region and reactivation of the cambium during the spring.

References

  1. Funada R (2000) Control of wood structure. In: Nick P (ed) Plant microtubules: potential for biotechnology. Springer-Verlag, Heidelberg, pp 51–81

    Chapter  Google Scholar 

  2. Catesson AM (1994) Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int J Plant Sci 155:251–261

    Article  CAS  Google Scholar 

  3. Larson PR (1994) The vascular cambium: development and structure. Springer-Verlag, Berlin, pp 1–725

    Google Scholar 

  4. Sundberg B, Little CHA (1990) Tracheid production in response to changes in the internal level of indole-3-acetic acid in 1-year-old shoots of Scots pine. Plant Physiol 94:1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Little CHA, Bonga JM (1974) Rest in the cambium ofAbies balsamea. Can J Bot 52:1723–1730

    Article  Google Scholar 

  6. Savidge RA, Wareing PF (1981) Plant growth regulators and the differentiation of vascular elements. In: Barnett JR (ed) Xylem cell development. Castle House, Tunbridge Wells, pp 192–235

    Google Scholar 

  7. Riding RT, Little CHA (1984) Anatomy and histochemistry ofAbies balsamea cambial zone cells during the onset and breaking of dormancy. Can J Bot 62:2570–2579

    Article  CAS  Google Scholar 

  8. Riding RT, Little CHA (1986) Histochemistry of the dormant vascular cambium ofAbies balsamea: changes associated with tree age and crown position. Can J Bot 64:2082–2087

    Article  Google Scholar 

  9. Sundberg B, Little CHA, Riding RT, Sandberg G (1987) Levels of endogenous indole-3-acetic acid in the vascular cambium region ofAbies balsamea trees during the activity-rest-quiescence transition. Physiol Plant 71:163–170

    Article  CAS  Google Scholar 

  10. Mellerowicz EJ, Coleman WK, Riding RT, Little CHA (1992) Periodicity of cambial activity inAbies balsamea. 1. Effects of temperature and photoperiod on cambial dormancy and frost hardiness. Physiol Plant 85:515–525

    Article  CAS  Google Scholar 

  11. Little CHA, Pharis RP (1995) Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL (ed) Plant stems. Academic, San Diego, pp 281–319

    Chapter  Google Scholar 

  12. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Little CHA, Wareing PF (1981) Control of cambial activity and dormancy inPicea sitchensis by indole-3-ylacetic and abscisic acids. Can J Bot 59:1480–1493

    Article  CAS  Google Scholar 

  14. Savidge RA, Heald JK, Wareing PF (1982) Non-uniform distribution and seasonal variation of endogenous indol-3-ylacetic acid in the cambial region ofPinus contorta Dougl. Planta 155:89–92

    Article  CAS  PubMed  Google Scholar 

  15. Savidge RA, Wareing PF (1984) Seasonal cambial activity and xylem development inPinus contorta in relation to endogenous indol-3-ylacetic and (S)-abscisic acid levels. Can J For Res 14:676–682

    Article  CAS  Google Scholar 

  16. Sandberg G, Ericsson A (1987) Indole-3-acetic acid concentration in the leading shoot and living bark of Scots pine: seasonal variation and effects of pruning. Tree Physiol 3:173–183

    Article  CAS  PubMed  Google Scholar 

  17. Sundberg B, Little CHA, Cui K (1990) Distribution of indole-3-acetic acid and the occurrence of its alkali-labile conjugates in the extraxylary region ofPinus sylvestris stems. Plant Physiol 93:1295–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sundberg B, Little CHA, Cui K, Sandberg G (1991) Level of endogenous indole-3-acetic acid in the stem ofPinus sylvestris in relation to the seasonal variation of cambial activity. Plant Cell Environ 14:241–246

    Article  CAS  Google Scholar 

  19. Sundberg B, Ericsson A, Little CHA, Nasholm T, Gref R (1993) The relationship between crown size and ring width inPinus sylvestris L. stems: dependence on indole-3-acetic acid, carbohydrates and nitrogen in the cambial region. Tree Physiol 12:347–362

    Article  CAS  PubMed  Google Scholar 

  20. Savidge RA (1991) Seasonal cambial activity inLarix, laricina saplings in relation to endogenous indol-3-ylacetic acid, sucrose, and coniferin. For Sci 37:953–958

    Google Scholar 

  21. Funada R, Kubo T, Fushitani M, Tabuchi M, Sugiyama T (2001) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region ofPinus densiflora stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    Article  CAS  Google Scholar 

  22. Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. Bios Scientific, Oxford, pp 169–188

    Google Scholar 

  23. Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Reg 6:137–169

    Article  CAS  Google Scholar 

  24. Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. C R Acad Sci Paris 322:633–724

    Article  CAS  PubMed  Google Scholar 

  25. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Article  Google Scholar 

  26. Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davis PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Academic, Dordrecht, pp 531–546

    Chapter  Google Scholar 

  27. Little CHA, Andrew DM, Silk PJ, Strunz GM (1979) Identification of cytokinins zeatin and zeatin riboside inAbies balsamea. Phytochemistry 18:1219–1220

    Article  CAS  Google Scholar 

  28. Eklund L (1991) Hormone levels in the cambial region of intactPicea abies during the onset of cambial activity. Physiol Plant 82:385–388

    Article  CAS  Google Scholar 

  29. Funada R, Sugiyama T, Kubo T, Fushitani M (1992) Identification of endogenous cytokinins in the cambial region ofCryptomeria japonica stem. Mokuzai Gakkaishi 38:317–320

    CAS  Google Scholar 

  30. Moritz T, Sundberg B (1996) Endogenous cytokinins in the vascular cambial region ofPinus sylvestris during activity and dormancy. Physiol Plant 98:693–698

    Article  CAS  Google Scholar 

  31. Hoskins JA, Pollitt RJ (1975) Quantitative aspects of urinary indole-3-acetic acid and 5-hydroxyindole-3-acetic acid excretion. J Chromatogr 109:436–438

    Article  CAS  PubMed  Google Scholar 

  32. Rivier L, Milon H, Pillet P-E (1977) Gas chromatography-mass spectrometric determination of abscisic acid levels in the cap and apex of maize roots. Planta 134:23–27

    Article  CAS  PubMed  Google Scholar 

  33. Funada R, Sugiyama T, Kubo T, Fushitani M (1987) Determination of indole-3-acetic acid levels inPinus densiflora using the isotope dilution method. Mokuzai Gakkaishi 33:83–87

    CAS  Google Scholar 

  34. Funada R, Sugiyama T, Kubo T, Fushitani M (1988) Determination of abscisic acid inPinus densiflora by selected ion monitoring. Plant Physiol 88:525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Funada R, Mizukami E, Kubo T, Fushitani M, Sugiyama T (1990) Distribution of indole-3-acetic acid and compression wood formation in the stems of inclinedCryptomeria japonica. Holzforschung 44:331–334

    Article  CAS  Google Scholar 

  36. Sugiyama T, Suye S, Hashizume T (1983) Mass spectrometric determination of cytokinins in young sweet-potato plants using deuterium-labeled standards. Agric Biol Chem 47:315–318

    CAS  Google Scholar 

  37. Hashizume T, Taniguchi W, Sugiyama T (1986) Mass spectrometric determination ofN 6-isopentenyladenosine andN 6-isopentenyladenine from human urine. Anal Sci 2:157–159

    Article  CAS  Google Scholar 

  38. Sugiyama T, Hashizume T (1989) Cytokinins in developing tuberous roots of sweet potato. Agric Biol Chem 53:49–52

    CAS  Google Scholar 

  39. Soejima H, Sugiyama T, Ishihara K (1992) Changes in cytokinin activities and mass spectrometric analysis of cytokinins in root exudates of rice plant (Oryza sativa L.). Plant Physiol 100:1724–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development inPopulus. Plant Physiol 116:577–585

    Article  Google Scholar 

  41. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B (2000) Cambial-region-specific expression of theAgrobacterium iaa genes in transgenic aspen visualized by a linkeduidA reporter gene. Plant Physiol 123:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savidge RA, Wareing PF (1982) Apparent auxin production and transport during winter in the nongrowing pine tree. Can J Bot 60:681–691

    Article  CAS  Google Scholar 

  44. Little CHA (1981) Effect of cambial dormancy state on the transport of [1-14C] indole-3-ylacetic acid inAbies balsamea shoots. Can J Bot 59:342–348

    Article  CAS  Google Scholar 

  45. Odani K (1985) Indole-3-acetic acid transport in pine shoots under the stage of true dormancy. J Jpn For Soc 67:332–334

    Google Scholar 

  46. Savidge RA (1983) The role of plant hormones in higher plant cellular differentiation. 2. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine,Pinus contorta. Histochem J 15:447–466

    Article  CAS  PubMed  Google Scholar 

  47. Lachaud S (1989) Participation of auxin and abscisic acid in the regulation of seasonal variations in cambial activity and xylogenesis. Trees 3:125–137

    Article  Google Scholar 

  48. Oribe Y, Kubo T (1997) Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol 17:81–87

    Article  CAS  PubMed  Google Scholar 

  49. Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in locally heated stems of the evergreen coniferAbies sachalinensis. Planta 212:684–691

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Funada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funada, R., Kubo, T., Sugiyama, T. et al. Changes in levels of endogenous plant hormones in cambial regions of stems ofLarix kaempferi at the onset of cambial activity in springtime. J Wood Sci 48, 75–80 (2002). https://doi.org/10.1007/BF00766242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00766242

Key words