Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol

Abstract

Two peroxidases, CWPO-A and CWPO-C, were isolated from the cell walls of poplar (Populus alba L.) callus culture. The cationic CWPO-C showed a strong preference for sinapyl alcohol over coniferyl alcohol as substrate. Thus, the monolignol utilization of CWPO-C is unique compared with other peroxidases, including anionic CWPO-A and horseradish peroxidase (HRP). CWPO-C polymerized oligomeric sinapyl alcohol (S-oligo) and sinapyl alcohol, producing a polymer of greater molecular weight. In contrast, HRP, which is specific to coniferyl alcohol, produced sinapyl alcohol dimers, rather than catalyzing polymerization. Adding coniferyl alcohol as a radical mediator in the HRP-mediated reaction did not result in S-oligo polymerization. This report shows that CWPO-C is an isoenzyme specific to sinapyl alcohol that polymerizes oligomeric lignols. Its catalytic activity toward oligomeric lignols may be related to the lignification of angiosperm woody plant cell walls.

References

  1. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advantages in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609

    Article  CAS  PubMed  Google Scholar 

  2. Baucher M, Monties B, Montagu MV, Boejan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  3. Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  PubMed  Google Scholar 

  4. Thordal-Christensen H, Brandt J, Cho BH, Rasmussen SK, Gregersen PL, Smedegaard-Petersen V, Collinge DB (1992) cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungusErysiphe graminis. Physiol Mol Plant Pathol 40:395–409

    Article  CAS  Google Scholar 

  5. Moerschbacher BM (1992) Plant peroxidases: involvement in response to pathogens. In: Penel C, Gaspar T, Greppin H (eds) Plant peroxidase (1980–1990), topics and detailed literature on molecular, biochemical, and physiological aspects. Universite de Geneva, Geneva, pp 91–99

    Google Scholar 

  6. Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RN (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313:841–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mäder M, Ungemach J, Schloss P (1980) The role of peroxidase isoenzyme groups ofNicotiana tabacum in hydrogen peroxide formation. Planta 147:467–470

    Article  PubMed  Google Scholar 

  8. Pang A, Catesson AM, Francesch C, Rolando C, Goldberg R (1989) On substrate specificity of peroxidase involved in the lignification process. J Plant Physiol 135:325–329

    Article  CAS  Google Scholar 

  9. Baier M, Goldberg R, Catesson AM, Francesch C, Rolando C (1993) Seasonal changes of isoperoxidases from poplar bark tissues. Phytochemistry 32:789–793

    Article  CAS  Google Scholar 

  10. Imberty A, Goldberg R, Catesson AM (1985) Isolation and characterization ofPopulus isoperoxidase involved in the last step of lignification. Planta 164:221–226

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg R, Catesson AM, Czaninski Y (1983) Some properties of syringaldazine oxidase, a peroxidase specifically involved in the lignification processes. Z Pflanzenphysiol 110:267–279

    Article  CAS  Google Scholar 

  12. Christensen JH, Bauw G, Welinder KG, Montagu MV, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mäder M, Nessel A, Bopp M (1977) Über die physiologische Bedeutung der Peroxidase-Isoenzymgruppen des Tabaks anhand einiger biochemischer Eigenschaften. II. pH-Optima, Michaelis-Konstanten, Maximale Oxidationschaften. Z Pflanzenphysiol 82:247–260

    Article  Google Scholar 

  14. Sato Y, Sugiyama M, Górecki RJ, Fukuda H, Komamine A (1993) Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements ofZinnia. Planta 189:584–589

    Article  CAS  Google Scholar 

  15. Sato Y, Sugiyama M, Komamine A, Fukuda H (1995) Separation and characterization of the isoenzymes of wall-bound peroxidase from culturedZinnia cells during trachealy element differentiation. Planta 196:141–147

    Article  CAS  Google Scholar 

  16. Lagrimini LM, Gingas V, Finger F, Rothstein S, Liu TY (1997) Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiol 114:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tadeo FR, Primo-Millo E (1990) Peroxidase activity changes and lignin deposition during the senescence process inCitrus stigmas and styles. Plant Sci 68:47–56

    Article  CAS  Google Scholar 

  18. Harkin JM, Obst JR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:269–298

    Article  Google Scholar 

  19. Saka S, Goling DAI (1985) Localization of lignins in wood cell wall. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, San Diego, pp 51–61

    Chapter  Google Scholar 

  20. Tsutsumi Y, Sakai K (1994) Lignin biosynthesis in woody angiosperm tissues. II. Peroxidase related to syringyl and guaiacyl lignin biosynthesis inPopulus callus cultures. Mokuzai Gakkaishi 40:744–750

    CAS  Google Scholar 

  21. Tsutsumi Y, Matsui K, Sakai K (1998) Substratespecific peroxidases in woody angiosperms and gymnosperms participate in regulating the dehydrogenative polymerization of syringyl and guaiacyl type lignins. Holzforschung 52:275–281

    Article  CAS  Google Scholar 

  22. Takahama U, Oniki T, Shimokawa H (1996) A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol 37:499–504

    Article  CAS  Google Scholar 

  23. Takahama U, Oniki T (1997) Enhancement of peroxidasedependent oxidation of sinapyl alcohol by an apoplastic component, 4-coumaric acid ester isolated from epicotyls ofVigna angularis L. Plant Cell Physiol 38:456–462

    Article  CAS  Google Scholar 

  24. Tsutsumi Y, Sakai K (1993) Lignin biosynthesis in woody angiosperm tissues. I. Lignification and peroxidase activity stimulated in water-stressedPopulus callus cultures. Mokuzai Gakkaishi 39:214–220

    CAS  Google Scholar 

  25. Quideau S, Ralph J (1992) Facile large-scale synthesis of coniferyl. sinapyl, andp-coumaryl alcohol. J Agric Food Chem 40:1108–1110

    Article  CAS  Google Scholar 

  26. Tsutsumi Y, Nishida T, Sakai K (1994) Lignin biosynthesis in woody angiosperm tissues. III. Isolation of substrate-specific peroxidase related to the dehydrogenative polymeriation of sinapyl and coniferyl alcohols fromPopulus callus cultures. Mokuzai Gakkaishi 40:1348–1354

    CAS  Google Scholar 

  27. Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plant. Holzforschung 48:21–33

    Article  CAS  Google Scholar 

  28. Sterjiades R, Dean JFD, Gamble G, Himmelsbach S, Eriksson KEL (1993) Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplantanus) cell-suspension cultures. Planta 190:75–87

    Article  CAS  Google Scholar 

  29. De Marco A, Guzzardi P, Jamet E (1999) Isolation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterization of activities related to cell wall metabolism. Plant Physiol 120:371–382

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sarkanen KV (1971) Precursors and their polymerization. In: Sarkanen KV, Ludwig CH (eds) Lignins. Wiley-Interscience, New York, pp 95–163

    Google Scholar 

  31. Tanahashi M, Takeuchi H, Higuchi T (1976) Dehydrogenative polymerization of 3.5-disubstituted p-coumaryl alcohol. Wood Res 61:44–53

    CAS  Google Scholar 

  32. Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxi-dase fromPhanerochaete chrysosporium. Proc Natl Acad Sci USA 96:1989–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoyama, W., Sasaki, S., Matsumura, S. et al. Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. J Wood Sci 48, 497–504 (2002). https://doi.org/10.1007/BF00766646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00766646

Key words