Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Formation of callose from sucrose in cotton fiber microsomal membranes

Abstract

Callose is formed from exogenous sucrose by cotton fiber microsomal membranes that contain both sucrose synthase and callose synthase activity. Although the coupled reaction between sucrose and callose synthases occurs predominantly to channel glucose from sucrosederived uridine diphosphate (UDP)-glucose into callose in the membranes, there is no difference in the UDP-glucose-forming/sucrose-forming activity ratios between the soluble and membrane-bound forms of sucrose synthase. The consumption of UDP-glucose from sucrose into callose probably leads to UDP-glucose formation rather than sucrose formation despite the lower affinity of sucrose synthase for sucrose than for UDP-glucose. Callose formation is markedly stimulated by the addition of either recombinant Glu11 (S11E) or in vitro phosphorylated Ser11 mung bean sucrose synthase but not by the wild-type nonphosphorylated Ser11 enzyme. We propose that a negative charge (by phosphorylation or mutagenesis) at Ser11 in sucrose synthase causes the enzyme to promote a coupled callose-forming reaction.

References

  1. 1.

    Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Hirai N, Sonobe S, Hayashi T (1998) In situ synthesis of β-glucan microfibrils on tobacco plasma membrane sheets. Proc Natl Acad Sci USA 96:14–18

    Google Scholar 

  3. 3.

    Nakai T, Konishi T, Zhang X-Q, Chollet R, Tonouchi N, Tsuchida T, Yoshinaga F, Mori H, Sakai F, Hayashi T (1998) An increase in apparent affinity for sucrose synthase of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol 39:1337–1341

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: change during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420:151–155

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Huber SC, Huber JL, Liao PC, Gage DA, McMichael RW Jr, Chourey PS, Hannah LC, Koch K (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Plant Physiol 112:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Shaw JR, Ferl RJ, Baier J, St. Clair D, Carson C, McCarty DR, Hannah LC (1994) Structural features of the maize susl gene and protein. Plant Physiol 106:1659–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhang X-Q, Chollet R (1997) Seryl-phosphorylation of soybean noudle sucrose synthase (nodulin-100) by a Ca2+-dependent protein kinase. FEBS Lett 410:126–130

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Zhang X-Q, Verma DPS, Patil S, Arredondo-Peter R, Miao G-H, Kuismanen R, Klucas RV, Chollet R (1997) Cloning of a full-length sucrose synthase cDNA from soybean (Glycine max) root nodules (accession no. AFO30231) (PGR97-173). Plant Physiol 115:1729

    Article  Google Scholar 

  9. 9.

    Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, Sakai F, Hayashi T (1999) Enhancement of cellulose production by expression of sucrose synthase inAcetobacter xylinum. Proc Natl Acad Sci USA 96:14–18

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Benziman M, Aloni Y, Delmer DP (1983) Unique regulatory properties of the UDP-glucose: 1,4-β-D-glucan synthase ofAcetobacter xylinum. J Appl Polym Sci 37:131–143

    CAS  Google Scholar 

  11. 11.

    Hayashi T, Read SM, Bussell J, Thelen M, Lin FC, Brown RM Jr, Delmer DP (1987) UDP-glucose: (1→3)-β-glucan synthases from mung bean and cotton. Plant Physiol 83:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  13. 13.

    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  14. 14.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  15. 15.

    Van Der Woude W, Lembi CA, Morre DJ, Kindinger JI, Ordin L (1974) β-Glucan synthetases of plasma membrane and Golgi apparatus from onion stem. Plant Physiol 54:333–340

    Article  Google Scholar 

  16. 16.

    Delmer DP (1972) The purification and properties of sucrose synthase from etiolatedPhaseolus aureus seedlings. 247:3822–3828

    CAS  Google Scholar 

  17. 17.

    Shimizu Y, Aotuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T (1997) Change in levels of mRANs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol 38:375–378

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Delmer DP, Cooper G, Alexander D, Cooper J, Hayashi T, Nitsche C, Thelen M (1985) New approaches to the study of cellulose biosynthesis. J Cell Sci 2(Suppl):33–50

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takahisa Hayashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konishi, T., Nakai, T., Sakai, F. et al. Formation of callose from sucrose in cotton fiber microsomal membranes. J Wood Sci 47, 331–335 (2001). https://doi.org/10.1007/BF00766781

Download citation

Key words

  • Callose
  • UDP-glucose
  • Sucrose synthase
  • Cotton
  • Fiber
  • Sucrose