Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid


The key enzymes of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), were detected in varying amounts in the mycelia of the woodrotting basidiomycetes tested, although they were grown in a glucose-rich medium. The highest specific activities of ICL (0.37 U/mg protein) and MS (0.63 U/mg protein) were measured for the brown-rot basidiomycetesLaetiporus sulphureus andFomitopsis palustris, respectively. The results indicate that the glyoxylate cycle enzymes occur in wood-rotting basidiomycetes as the seemingly “constitutive” enzymes at varying levels. The glyoxylate cycle enzymes, including malate dehydrogenase (MDH), and the oxalate-producing enzymes glyoxylate dehydrogenase (GDH) and oxaloacetase (OXA) were found to have good correlation with biosynthesis of oxalic acid and fungal growth, which was also confirmed by use of an ICL inhibitor. A new role for the glyoxylate cycle is discussed in relation to oxalic acid biosynthesis in wood-rotting basidiomycetes.


  1. 1.

    Shimazono H (1955) Oxalic acid decarboxylase, a new enzyme from the mycelium of wood destroying fungi. J Biochem 42:321–340

    Article  CAS  Google Scholar 

  2. 2.

    Takao S (1965) Organic acid production by basidiomycetes. Appl Microbiol 13:732–737

    PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by basidiomycetes including the white-rot speciesCoriolus versicolor andPhanerochaete chrysosporium. Appl Microbiol Biotechnol 39:5–10

    Article  CAS  Google Scholar 

  4. 4.

    Akamatsu Y, Takahashi M, Shimada M (1993) Production of oxalic acid by wood-rotting basidiomycetes grown on low and high nitrogen culture media. Mater Org 28:251–264

    CAS  Google Scholar 

  5. 5.

    Shimada M, Akamatsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as low molecular weight compound involved in brown-rot and white-rot wood-decays. J Biotechnol 53:103–113

    Article  CAS  Google Scholar 

  6. 6.

    Akamatsu Y, Ma DB, Higuchi T, Shimada M (1990) A novel enzymatic decarboxylation of oxalic acid by lignin peroxidase system of white-rot fungusPhanerochaete chrysosporium. FEBS Lett 269:261–263

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Popp JL, Kalyanaraman B, Kirk TK (1990) Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alchohol, malonic or oxalic acid and oxygen. Biochemistry 29:10475–10480

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Barr DP, Aust SD (1994) Mechanism of white-rot fungi use to degrade pollutants. Environ Sci Technol 28:79A-87A

    Article  Google Scholar 

  9. 9.

    Shimada M, Akamatsu Y, Ohta A, Takahashi M (1991) Biochemical relationship between biodégradation of cellulose and formation of oxalic acid in brown-rot wood decay. International Research Group IRG/WP document no. 1472, pp 1–12

  10. 10.

    Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis bySclerotium rolfsii. Phytophalology 55:204–211

    CAS  Google Scholar 

  11. 11.

    Green F, Clausen CA (1999) Production of polygalacturonase and increase of longitudinal gas permeability in southern pine by brown-rot and white-rot fungi. Holzforschung 53:563–568

    Article  CAS  Google Scholar 

  12. 12.

    Murphy RJ, Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Trans Br Mycol Soc 81:165–168

    Article  CAS  Google Scholar 

  13. 13.

    Sutler HP, Jones EBG (1985) Interactions between copper and wood degrading fungi. Record of the 1985 Annual Convention of the British Wood Preserving Association, pp 29–41

  14. 14.

    Da Costa EWB, Kerruish RM (1964) Tolerance ofPoria species to copper-based wood preservatives. For Prod J 14:106–112

    Google Scholar 

  15. 15.

    Singh J (1994) Nature and extend of deterioration in buildings due to fungi. In: Sing J (ed) Building mycology (management of decay and health in buildings). E & FN Spon, London, pp 34–53

    Google Scholar 

  16. 16.

    Doi S (1993) Dry rot damage of a cowshed, an important cultural property in Hokkaido University, and its repairs. In: Toishi K, Arai H, Kenjo T, Yamano K (eds) Biodeterioration of Cultural Property 2. International Communications Specialists, Tokyo, pp 498–504

    Google Scholar 

  17. 17.

    Akamatsu Y, Shimada M (1994) Partial purification and characterization of glyoxylate oxidase from the brown-rot basidiomyceteTyromyces palustris. Phytochemistry 37:649–653

    Article  CAS  Google Scholar 

  18. 18.

    Akamatsu Y, Ohta A, Takahashi M, Shimada M (1991) Enzymatic formation of oxalate from oxaloacetate with cell-free extracts of brown-rot fungusTyromyces palustris in relation to biodegradation of cellulose. J Jpn Wood Res Soc 37:575–577

    CAS  Google Scholar 

  19. 19.

    Tokimatsu T, Nagai Y, Hattori T, Shimada M (1998) Purification and characteristics of a novel cytochromec dependent glyoxylate dehydrogenase from a wood destroying fungusTyromyces palustris. FEBS Lett 437:117–121

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ruch DG, Burton KW, Ingram LA (1991) Occurrence of the glyoxylate cycle in basidiospores of homobasidiomycetes. Mycologia 83:821–825

    Article  CAS  Google Scholar 

  21. 21.

    Kornberg HL (1966) The role and control of the glyoxylate cycle inEscherichia coli. Biochem J 99:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cioni M, Pinzauti G, Vanni P (1980) Comparative biochemistry of the glyoxylate cycle. Comp Biochem Physiol 70B:l-26

    Google Scholar 

  23. 23.

    Dixon GH, Kornberg HL (1959) Assay method for key enzymes of glyoxylate cycle. Biochem J 72:3P

    Google Scholar 

  24. 24.

    Labrou NE, Clonis YD (1997)l-Malate dehydrogenase fromPseudomonas stutzeri: purification and characterization. Arch Biochem Biophys 337:103–114

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Maxwell DP, Maxwell MD, Hanssler G, Armentrout VN, Murray GM, Hoch HC (1975) Microbodies and glyoxylate cycle enzyme activities in the filamentous fungi. Planta 124:109–123

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Casselton PJ, Fawole MO (1969) Isocitrate lyase inCoprlnus lagopus (sensu Buller). Can J Microbiol 15:637–640

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Tsunoda K, Nagashima K, Takahashi M (1997) High tolerance of wood-destroying fungi to copper-based fungicides. Mater Org 31:31–41

    CAS  Google Scholar 

  29. 29.

    McFadden BA, Purohit S (1977) Itaconate, an isocitrate lyasedirected inhibitor inPseudomonas indigofera. J Bacteriol 131:136–144

    PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Kornberg HL, Krebs HA (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179:988–991

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Moore D, Ewaze JO (1976) Activities of some enzymes involved in metabolism of carbohydrate during sporophore development inCoprlnus cinereus. J Gen Microbiol 97:313–322

    Article  CAS  Google Scholar 

  32. 32.

    O'Connel BT, Paznokaz JL (1980) Glyoxylate cycle inMucor racemosus. J Bacteriol 143:416–421

    Google Scholar 

  33. 33.

    Aguilar C, Urzúa U, Koenig C, Vicuña R (1999) Oxalate oxidase fromCeriporiopsis subvermispora: Biochemical and cytochemical studies. Arch Biochem Biophys 366:275–282

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Kuan 1C, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodégradation. Proc Natl Acad Sci USA 99:1242–1246

    Article  Google Scholar 

  35. 35.

    Espejo E, Agosin E (1991) Production and degradation of oxalic acid by brown-rot fungi. Appl Environ Microbiol 57:1980–1986

    PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Micales JA (1995) Oxalate decarboxylase in the brown-rot wood decay fungusPostia placenta. Mater Org 29:177–186

    CAS  Google Scholar 

  37. 37.

    Green LS, Karr DB, Emerich DW (1998) Isocitrate dehydrogenase and glyoxylate cycle enzyme activities inBradyrhizobium japonicum under various growth conditions. Arch Microbiol 169:445–451

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducerAshbya gossiphii. Microbiology 142:419–426

    Article  CAS  Google Scholar 

  39. 39.

    Maxwell DP, Bateman DF (1968) Oxalic acid biosynthesis bySclerotium rolfsii. Phytopathology 58:1635–1642

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mikio Shimada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munir, E., Yoon, J., Tokimatsu, T. et al. New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J Wood Sci 47, 368–373 (2001).

Download citation

Key words

  • Glyoxylate cycle
  • Wood-rotting fungi
  • Isocitrate lyase
  • Malate synthase
  • Oxalic acid biosynthesis