Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Lignification and peroxidase in tension wood ofEucalyptus viminalis seedlings

Abstract

Seedlings ofEucalyptus viminalis were grown for 50 days with their stems bent so tension wood would form. Every 10 days the lignin content, monomeric composition, and peroxidase activity in the tension wood were compared with those in the lower side (opposite wood) and in vertically grown controls. The lignin content in the developing tension wood started to decrease after 10 days of bending and kept decreasing for 50 days, whereas those in control plants and opposite wood remained almost unchanged. The yields of syringaldehyde from tension wood by nitrobenzene oxidation increased, and consequently the syringyl/ guaiacyl ratio of the lignin was higher in tension wood than in opposite wood and control plants. The peroxidase ionically bound to the cell walls (IPO) catalyzed oxidation of guaiacol and syringaldazine. The syringaldazineoxidizing activity of IPO from tension wood increased, whereas the activities of IPO from opposite wood and control plants did not show any marked change. In tension wood the increase in syringaldazine-oxidizing activity of IPO was consistent with an increase in the syringaldehyde yield. This suggests that IPO contributes to syringyl lignin deposition as other enzymes involved in the monolignol biosynthesis do in tension wood formation.

References

  1. 1.

    Wardrop AB (1964) The reaction anatomy of arborescent angiosperms. In: Zimmermanm MH (ed) The formation of wood in forest trees. Academic, San Diego, pp 405–456

    Google Scholar 

  2. 2.

    Hughes FE (1965) Tension wood: a review of literature. Part I. Occurrence and development of tension wood. For Abstr 26:2–9

    Google Scholar 

  3. 3.

    Hughes FE (1965) Tension wood: a review of literature. Part II. The properties and use characteristics of tension wood. For Abstr 26:179–186

    Google Scholar 

  4. 4.

    Côté WAJ, Day AC (1965) Anatomy and ultrastructure of reaction wood. In: Cote WAJ (ed) Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, pp 391–418

    Google Scholar 

  5. 5.

    Scurfield G (1973) Reaction wood: its structure and function. Science 179:647–655

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Schwerin G (1958) The chemistry of reaction wood. Part II. The polysaccharides ofEucalyptus goniocalyx andPinus radiata. Holzforschung 12:43–48

    CAS  Article  Google Scholar 

  7. 7.

    Bland DE (1958) The chemistry of reaction wood. Part I. The lignins ofEucalyptus goniocalyx andPinus radiata. Holzforschung 12:36–43

    CAS  Article  Google Scholar 

  8. 8.

    Bland DE, Scurfield G (1964) The chemistry of reaction wood. Part IV. The distribution and nature of the lignin in seedlings of hardwoods. Holzforschung 18:161–166

    CAS  Article  Google Scholar 

  9. 9.

    Timell TE (1969) The chemical composition of tension wood. Svensk Papperstidn 72:173–181

    CAS  Google Scholar 

  10. 10.

    Baillères H, Chanson B, Fournier M, Tollier MT, Monties B (1995) Wood structure, chemical composition and growth strains inEucalyptus clones (in French). Ann Sci For 52:157–172

    Article  Google Scholar 

  11. 11.

    Baba K, Ona T, Takabe K, Itoh T, Ito K (1996) Chemical and anatomical characterization of the tension wood ofEucalyptus camaldulensis L. Mokuzai Gakkaishi 42:795–798

    CAS  Google Scholar 

  12. 12.

    Kutsuki H, Higuchi T (1981) Activities of some enzymes of lignin formation in reaction wood ofThuja orientalis, Metasequoia glyptostroboides andRubinia pseudoacacia. Planta 152:365–368

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wardrop AB, Scaife E (1956) Occurrence of peroxidase in tension wood of angiosperms. Nature 178:867

    CAS  Article  Google Scholar 

  14. 14.

    Scurfield G, Wardrop AB (1963) Lignification in reaction wood. Aust J Bot 11:107–116

    Article  Google Scholar 

  15. 15.

    Scurfield G (1972) Histchemistry of reaction wood cell walls in two species ofEucalyptus and inTriscania conferta R. BR. Aust J Bot 20:9–26

    CAS  Article  Google Scholar 

  16. 16.

    Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    CAS  Article  Google Scholar 

  17. 17.

    Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plant. Holzforschung 48:21–33

    CAS  Article  Google Scholar 

  18. 18.

    Tsutsumi Y, Nishida T, Sakai K (1994) Lignin biosynthesis in woody angiosperm tissues. III. Isolation of substrate-specific peroxidase related to the dehydrogenative polymeriation of sinapyl and coniferyl alcohols fromPopulus callus cultures. Mokuzai Gakkaishi 40:1348–1354

    CAS  Google Scholar 

  19. 19.

    Tsutsumi Y, Sakai K (1994) Lignin biosynthesis in woody angiosperm tissues. II. Peroxidase related to syringyl and guaiacyl lignin biosynthesis inPopulus callus cultures. Mokuzai Gakkaishi 40:744–750

    CAS  Google Scholar 

  20. 20.

    Matsui K, Tsutsumi Y, Sakai K (1997) Kinetic study of lignol-specific peroxidase isoenzymes fromPopulus callus cultures. Mokuzai Gakkaishi 43:778–784

    CAS  Google Scholar 

  21. 21.

    Tsutsumi Y, Matsui K, Sakai K (1998) Substrate-specific peroxidases in woody angiosperms and gymnosperms perticipate in regulating the dehydrogenative polymerization of syringyl and guaiacyl type lignins. Holzforschung 52:275–281

    CAS  Article  Google Scholar 

  22. 22.

    Fergus BJ, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117

    CAS  Article  Google Scholar 

  23. 23.

    Fergus BJ, Goring DAI (1970) The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24:118–124

    CAS  Article  Google Scholar 

  24. 24.

    Samejima M (1990) Determination of enzyme activities in woodrotting fungi. In: Usuda M, Mizumachi H, Iiyama K, Morohoshi N, Yamaguchi A (eds) Methods in Wood Science, vol II: Chemistry (in Japanese). Chyugai Sangyo, Tokyo, pp 342–348

    Google Scholar 

  25. 25.

    Yasuda S (1990) Wood analyses. In: Usuda M, Mizumachi H, Iiyama K, Morohoshi N, Yamaguchi A (eds) Methods in Wood Science, vol II: Chemistry (in Japanese). Chyugai Sangyo, Tokyo, pp 151–165

    Google Scholar 

  26. 26.

    Meshitsuka G (1990) Chemistry of lignin. In: Usuda M, Mizumachi H, Iiyama K, Morohoshi N, Yamaguchi A (eds) Methods in Wood Science, vol II: Chemistry (in Japanese). Chyugai Sangyo, Tokyo, pp 194–203

    Google Scholar 

  27. 27.

    Jacobi WR, Scarpa VJ, Parke RV (1990) Anatomy and chemistry of aspen branches afflicted with drooping aspen disease. Can J Plant Pathol 12:158–163

    CAS  Article  Google Scholar 

  28. 28.

    Harkin JM, Obst JR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:269–298

    Article  Google Scholar 

  29. 29.

    Goldberg R, Catesson AM, Czaninski Y (1983) Some properties of syringaldazine oxidase, a peroxidase specifically involved in the lignification processes. Z Pflanzenphysiol 110:267–279

    CAS  Article  Google Scholar 

  30. 30.

    Imberty A, Goldberg R, Catesson AM (1985) Isolation and characterization ofPopulus isoperoxidase involved in the last step of lignification. Planta 164:221–226

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Pang A, Catesson AM, Francesch C, Rolando C, Goldberg R (1989) On substrate specificity of peroxidase involved in the lignification process. J Plant Physiol 135:325–329

    CAS  Article  Google Scholar 

  32. 32.

    Fukuda H, Komamine A (1982) Lignin biosynthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from mesophyll ofZinnia elegans. Planta 155:423–430

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Mäder M, Nessel A, Bopp M (1977) On the physiological significance of the isoenzyme groups of peroxidase from tobacco demonstrated by biochemical properties. II. pH-optima, Michaelis-constants, maximal oxidation-rate (in German). Z Pflanzenphysiol 82:247–260

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuji Tsutsumi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aoyama, W., Matsumura, A., Tsutsumi, Y. et al. Lignification and peroxidase in tension wood ofEucalyptus viminalis seedlings. J Wood Sci 47, 419–424 (2001). https://doi.org/10.1007/BF00767892

Download citation

Key words

  • Eucalyptus
  • Tension wood
  • Lignin biosynthesis
  • Peroxidase
  • Substrate preference