Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Role of Tween 80 in biobleaching of unbleached hardwood kraft pulp with manganese peroxidase

Abstract

The role of Tween 80 in biobleaching of unbleached hardwood kraft pulp (HWKP) with manganese peroxidase (MnP) was investigated. Among the surfactants (e.g., Tween 80, Tween 20, CHAPSO) the most significant brightness increase was obtained with Tween 80. Tween 80 and Tween 20 exhibited several effects, such as dispersion of degraded lignin and activation of MnP, that partly contributed to the brightening of HWKP during MnP treatment. However, these characteristics did not explain the most appreciable effect on the brightness increase by Tween 80. Lipid peroxidation of surfactants during MnP biobleaching was determined by measuring the peroxide value (POV). The order of the POV increase was consistent with that of the brightness increase of pulp during MnP treatment in the presence of various surfactants or linolenic acid. However, radicals and peroxides derived from lipid (linolenic acid) peroxidation by lipoxidase hardly brightened the HWKP by themselves. These results suggested that Tween 80 was peroxidized by Mn(III), and that Mn(III) and lipid peroxidation of Tween 80 synergistically brightened HWKP.

References

  1. 1.

    Ehara K, Tsutsumi Y, Nishida T (1997) Biobleaching of softwood and hardwood kraft pulp with manganese peroxidase. Mokuzai Gakkaishi 43:861–868

    CAS  Google Scholar 

  2. 2.

    Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactant. Appl Environ Microbiol 60:258–263

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Volkering F, Breure AM, Andel van JG, Rulkens WH (1995) Influence of nonionic surfactant on bioavailability and biodegradation of polycyclic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons byPhanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Thibault SL, Anderson M, Framkenberger WT Jr (1996) Influence of surfactants on pyrene deposition and degradation in soil. Appl Environ Microbiol 62:283–287

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Boonchan S, Britz ML, Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbon byStenotrophomonas maltophilia. Biotechnol Bioeng 59:482–494

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Venkatadri P, Irvine RL (1990) Effect of agitation on ligninase activity and ligninase production byPhanerochaete chrysosporium. Appl Environ Microbiol 56:2684–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222–229

    CAS  Article  Google Scholar 

  9. 9.

    Ehara K, Iiyoshi Y, Tsutsumi Y, Nishida T (1999) Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. J Wood Sci 46:180–183

    Article  Google Scholar 

  10. 10.

    Davletshin AI, Egorov VV, Zubov VP (1998) Effect of surfactants on peroxidase activity: I. Effect of anionic surfactants. Russian J Bioorganic Chem 24:373–375

    Google Scholar 

  11. 11.

    Jensen KA Jr, Bao W, Kawai S, Srebotnik E, Hammel KE (1996) Manganese-dependent cleavage of nonphenolic lignin structures byCeriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62:3679–3686

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bao W, Fukushima Y, Jensen KA Jr, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354: 297–300

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase ofPhanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Takagi T, Mitsuno Y, Masamura M (1978) Determination of peroxide value by the colorimetric iodine method with protection of iodide as cadmium complex. Lipids 13:147–151

    CAS  Article  Google Scholar 

  15. 15.

    Wariishi H, Gold MH (1988) Manganese peroxidase from the basidiomycetePhanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27:5365–5370

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wariishi H, Akileswaran L, Gold MH (1990) Lignin peroxidase compound III, Mechanism of formation and decomposition. J Biol Chem 265:2070–2077

    CAS  PubMed  Google Scholar 

  17. 17.

    Bockle B, Martinez MJ, Guillen F, Martinez AT (1999) Mechanism of peroxidase inactivation in liquid cultures of the ligninolytic fungusPleurotus pulmonarius. Appl Environ Microbiol 65:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ehara K, Tsutsumi Y, Nishida T (1998) The roles of Tween 80 in biobleaching with manganese peroxidase. In: Proceedings of The 43rd Lignin Symposium, Fuchu, Tokyo, Japan, pp 115–118

  19. 19.

    Yoshida Y, Niki E (1992) Oxidation of phosphatidylcholine liposome in aqueous dispersions induced by copper and iron. Bull Chem Soc Jpn. 65:1849–1854

    CAS  Article  Google Scholar 

  20. 20.

    Yoshida Y, Niki E (1992) Oxidation of methyl linoleate in aqueous dispersions induced by copper and iron. Arch Biochem Biophys 295:107–114

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Dix TA, Marnett LJ (1981) Free radical epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[α]pyrene by hematin and polyunsaturated fatty acid hydroperoxides. J Am Chem Soc 103:6744–6746

    CAS  Article  Google Scholar 

  22. 22.

    Dix TA, Fontana R, Panthani A, Marnett LJ (1985) Hematin catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[α] pyrene by polyunsaturated fatty acid hydroperoxides. J Biol Chem 260:5358–5365

    CAS  PubMed  Google Scholar 

  23. 23.

    Watanabe T, Koller K, Messner K (1998) Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine. J Biotechnol 62:221–230

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Hofrichter M, Ziegenhangen D, Vares T, Friedrich M, Jager MG, Fritsche W, Hatakka A (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362–366

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Nishida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ehara, K., Tsutsumi, Y. & Nishida, T. Role of Tween 80 in biobleaching of unbleached hardwood kraft pulp with manganese peroxidase. J Wood Sci 46, 137–142 (2000). https://doi.org/10.1007/BF00777360

Download citation

Key words

  • Lignin
  • Manganese peroxidase
  • Biobleaching
  • Surfactant
  • Lipid peroxidation