Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Inhibition ofTrichoderma cellulase activity by a stilbene glucoside fromPicea glehnii bark

Abstract

The stilbene glucoside isorhapontin (5,4′-dihydroxy-3′-methoxystilbene-3-β-D-glucoside) is the major constituent of the ethyl acetate extracts fromPicea glehnii bark. Isorhapontin inhibited the hydrolytic activity ofTrichoderma cellobiohydrolase I (CBH I) for both bacterial microcrystalline cellulose and the soluble cellooligosaccharide celloheptaitol. The inhibitory effect for celloheptaitol, however, was more drastic than that for bacterial microcrystalline cellulose. The hydrolytic activity of the CBH I core domain for celloheptaitol was also inhibited by isorhapontin to a similar extent, suggesting that the interaction between isorhapontin and the core domain of CBH I is the reason for this phenomenon. The inhibition of CBH I activity by isorhapontin showed mixed noncompetitive and uncompetitive types in a concentration of the inhibitor of less than 125μM. TheK i andK i′ values were estimated to be 57.2 and 33.3μM, respectively. Whereas isorhapontin strongly inhibited CBH I activity, its aglycone isorhapontigenin (3′-methoxy-3,5,4′-trihydroxystilbene) showed almost no inhibition. Consequently, both the stilbenic and theβ-glucosidic structures in isorhapontin are essential for the inhibitory effect on CBH I activity. Isorhapontin also inhibited the activity ofTrichoderma endoglucanase I for celloheptaitol, whereas almost no effect was observed for the activities of both endoglucanases II and III.

References

  1. Hemingway RW (1981) Bark: its chemistry and prospects for chemical utilization. In: Goldstein IS (ed) Organic chemicals from biomass. CRC Press, Boca Raton, FL, pp 189–248

    Google Scholar 

  2. Laks PE (1991) Chemistry of bark. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 257–330

    Google Scholar 

  3. Samejima M, Yoshimoto T (1981) General aspects of phenolic extractives from coniferous barks. Mokuzai Gakkaishi 27:491–497

    CAS  Google Scholar 

  4. Manners GD, Swan EP (1971) Stilbenes in the barks of five CanadianPicea species. Phytochemistry 10:607–610

    Article  CAS  Google Scholar 

  5. Solhaug KA (1990) Stilbene glucosides in bark and needles fromPicea species. Scand J For Res 5:59–67

    Article  Google Scholar 

  6. Underwood CDT, Pearce RB (1991) Astringin and isorhapontin distribution in sitka spruce trees. Phytochemistry 30:2183–2189

    Article  CAS  Google Scholar 

  7. Arrieta-Escobar A, Belin JM (1982) Effects of polyphenolic compounds on the growth and cellulolytic activity of a strain ofTrichoderma viride. Biotechnol Bioeng 24:983–989

    Article  CAS  PubMed  Google Scholar 

  8. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  9. Hart JH, Shrimpton DM (1979) Role of stilbenes in resistance of wood to decay. Phytopathology 69:1138–1143

    Article  CAS  Google Scholar 

  10. Schultz TP, Hubbard TF Jr, Jin L, Fisher TH, Nicholas DD (1990) Role of stilbenes in the natural durability of wood: fungicidal structure-activity relationships. Phytochemistry 29:1501–1507

    Article  CAS  Google Scholar 

  11. Schultz TP, Cheng Q, Boldin WD, Hubbard TF Jr, Jin L, Fisher TH, Nicholas DD (1991) Comparison of the fungicidal activities of (E)-4-hydroxylated stilbenes and related bibenzyls. Phytochemistry 30:2939–2945

    Article  CAS  Google Scholar 

  12. Woodward S, Pearce RB (1988) The role of stilbenes in resistance of sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiol Mol Plant Pathol 33:127–149

    Article  CAS  Google Scholar 

  13. Shibutani S, Samejima M, Saburi Y (1998) Antimicrobial activities of extractives from the barks of Japanese coniferous trees. Bull Tokyo Univ For 99:219–233

    Google Scholar 

  14. Shiotsu Y, Samejima M, Habu N, Yoshimoto T (1989) Enzymatic conversion of stilbenes from the inner bark ofPicea glehnii into aromatic aldehydes. Mokuzai Gakkaishi 35:826–831

    CAS  Google Scholar 

  15. Samejima M, Sugiyama J, Igarashi K, Eriksson K-EL (1998) Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 305:281–288

    Article  Google Scholar 

  16. Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I fromTrichoderma reesei. FEBS Lett 204:223–227

    Article  Google Scholar 

  17. Habu N, Igarashi K, Samejima M, Pettersson B, Eriksson K-EL (1997) Enhanced production of cellobiose dehydrogenase in culturcs ofPhanerochaete chrysosporium supplemented with bovine calf serum. Biotechnol Appl Biochem 26:97–102

    CAS  PubMed  Google Scholar 

  18. Samejima M, Ohkubo T, Igarashi K, Isogai A, Kuga S, Sugiyama J, Eriksson K-EL (1997) The behaviour ofPhanerochaete chrysosporium cellobiose dehydrogenase on adsorption to crystalline and amorphous celluloses. Biotechnol Appl Biochem 25:135–141

    CAS  Google Scholar 

  19. Isogai A, Usuda M (1991) Preparation of low-molecular weight celluloses using phosphoric acid. Mokuzai Gakkaishi 37:339–344

    CAS  Google Scholar 

  20. Kremer SM, Wood PM (1992) Continuous monitoring of cellulose oxidation by cellobiose oxidase fromPhanerochaete chrysosporium. FEMS Microbiol Lett 92:187–192

    Article  CAS  Google Scholar 

  21. Samejima M, Eriksson K-EL (1992) A comparison of the catalytic properties of cellobiose: quinone oxidoreductase and cellobiose oxidase fromPhanerochaete chrysosporium. Eur J Biochem 207:103–107

    Article  CAS  PubMed  Google Scholar 

  22. Kolbe J, Kubicek CP (1990) Quantification and identification of the main components of theTrichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent assay (ELISA). Appl Microbiol Biotechnol 34:26–30

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths DW, Jones DIH (1977) Cellulase inhibition by tannins in the testa of field beans (Vicia faba). J Sci Food Agric 28:983–989

    Article  CAS  PubMed  Google Scholar 

  24. Knowles J, Lehtovaara P, Teeri T (1987) Cellulase families and their genes. Trends Biotechnol 5:255–261

    Article  CAS  Google Scholar 

  25. Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system ofTrichoderma reesei QM 9414: analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170:575–581

    Article  CAS  PubMed  Google Scholar 

  26. Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I fromTrichoderma reesei. J Mol Biol 275:309–325

    Article  CAS  PubMed  Google Scholar 

  27. Koivula A, Kinnari T, Harjunpää V. Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation byTrichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346

    Article  CAS  PubMed  Google Scholar 

  28. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Samejima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibutani, S., Igarashi, K., Samejima, M. et al. Inhibition ofTrichoderma cellulase activity by a stilbene glucoside fromPicea glehnii bark. J Wood Sci 47, 135–140 (2001). https://doi.org/10.1007/BF00780562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00780562

Key words