Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

NADPH-dependent ferrireductase produced by white-rot fungusPhanerochaete sordida YK-624

Abstract

An intracellular, soluble ferrireductase thought to be involved in the reduction of manganese dioxide by white-rot fungusPhanerochaete sordida YK-624 was purified for the first time. Two isoenzymes, NAD(P)H-dependent and NADPH-dependent, respectively, were detected by hydrophobic chromatography. The NADPH-dependent ferrireductase was purified to homogeneity by ammonium sulfate fractionation, hydrophobic interaction, gel permeation, and anion-exchange chromatography. The purified protein, which is monomeric, has a molecular mass of 35 kDa (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and pl 5.1 (determined by isoelectric focusing). The purified protein did not use cellobiose as an electron donor. The purified protein reduced Fe(III)-nitrilotriacetate complex, Mn(III)-malonate complex, methoxy-p-benzoquinone, and cytochrome c; veratraldehyde, 2-hydroxy-1,4-naphthoquinone, phenazine methosulfate, and plumbagin could not be reduced. Particularly, the protein showed the highest reducing rate for Fe(III)-organic acid complexes, such as Fe(III)-nitrilotriacetate, among these electron acceptors.

References

  1. Katagiri N, Tsutsumi Y, Nishida T (1995) Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl Environ Microbiol 61:617–622

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Katagiri N, Tsutsumi Y, Nishida T (1995) Extracellular reducing enzyme during biobleaching of hardwood kraft pulp by white-rot fungi. Mokuzai Gakkaishi 41:780–784

    CAS  Google Scholar 

  3. Paice MG, Jurasek L, Ho C, Bourbonnais R, Archibald F (1989) Direct biological bleaching of hardwood kraft pulp with the fungusCoriolus versicolor. Tappi J 72:217–221

    CAS  Google Scholar 

  4. Reid ID, Paice MG, Ho C, Jurasek L (1990) Biological bleaching of softwood kraft pulp with the fungusTrametes versicolor. Tappi J 73:149–153

    CAS  Google Scholar 

  5. Hirai H, Kondo R, Sakai K (1994) Screening of lignin-degrading fungi and their ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokuzai Gakkaishi 40:980–986

    CAS  Google Scholar 

  6. Tsuchikawa K, Kondo R, Sakai K (1995) Bleaching of kraft pulp with multi-stage biological treatments. Jpn Tappi J 49:1332–1338

    Article  CAS  Google Scholar 

  7. Fujita K, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1991) Biobleaching of kraft pulp using white-rot fungus IZU-154. Tappi J 74:123–127

    CAS  Google Scholar 

  8. Fujita K, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1991) Biobleaching of softwood kraft pulp using white-rot fungus IZU-154. Tappi J 76:81–84

    Google Scholar 

  9. Iimori T, Kaneko R, Yoshikawa H, Machida M, Yoshioka H, Murakami K (1994) Screening of pulp-bleaching fungi and bleaching activity of newly isolated fungus SKB-1152. Mokuzai Gakkaishi 40:733–737

    CAS  Google Scholar 

  10. Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Manganese peroxidase, produced byTrametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl Environ Microbiol 59:260–265

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kondo R, Harazono K, Sakai K (1994) Bleaching of hardwood kraft pulp with manganese peroxidase secreted fromPhanerochaete sordida YK-624. Appl Environ Microbiol 60:4359–4363

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase byPhanerochaete chrysosporium. J Bacteriol 172:3125–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycetePhanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27:5365–5370

    Article  CAS  PubMed  Google Scholar 

  14. Hirai H, Kondo R, Sakai K (1995) Effect of metal ions on biological bleaching of kraft pulp withPhanerochaete sordida YK-624. Mokuzai Gakkaishi 41:69–75

    CAS  Google Scholar 

  15. Kondo R, Kurashiki K, Sakai K (1994) In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl Environ Microbiol 60:921–926

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Harazono K, Kondo R, Sakai K (1996) Bleaching of hardwood kraft pulp with manganese peroxidase fromPhanerochaete sordida YK-624 without addition of MnSO4. Appl Environ Microbiol 62:913–917

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy BP, Paice MG, Archibald FS, Misra SK, Misiak LE (1994) Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose:quinone oxidoreductase fromTrametes versicolor. J Biol Chem 269:19745–19750

    CAS  PubMed  Google Scholar 

  18. Hirai H, Kondo R, Sakai K (1997) A model system for NAD(P)H-dependent reduction of manganese dioxide mediated by ferrous chelate in white-rot fungusPhanerochaete sordida YK-624. Mokuzai Gakkaishi 43:247–253

    CAS  Google Scholar 

  19. Constam D, Muheim A, Zimmermann W, Fiechter A (1991) Purification and partial characterization of an intracellular NADH:quinone oxidoreductase fromPhanerochaete chrysosporium. J Gene Microbiol 137:2209–2214

    Article  CAS  Google Scholar 

  20. Brock B, Rieble S, Gold MH (1995) Purification and characterization of a 1,4-benzoquinone reductase from the basidiomycetePhanerochaete chrysosporium. Appl Environ Microbiol 61:3076–3081

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brock BJ, Gold MH (1996) 1,4-Benzoquinone reductase from the basidiomycetePhanerochaete chrysosporium: spectral and kinetic analysis. Arch Biochem Biophys 331:31–40

    Article  CAS  PubMed  Google Scholar 

  22. Muheim A, Waldner R, Sanglard D, Reiser J, Schoemaker HE, Leisola MSA (1991) Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungusPhanerochaete chrysosporium. Eur J Biochem 195:369–375

    Article  CAS  PubMed  Google Scholar 

  23. Rieble S, Joshi DK, Gold MH (1994) Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycetePhanerochaete chrysosporium. J Bacteriol 176:4838–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bao W, Renganathan V (1992) Cellobiose oxidase ofPhanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80

    Article  CAS  PubMed  Google Scholar 

  25. Bao W, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungusPhanerochaete chrysosporium. Arch Biochem Biophys 300:705–713

    Article  CAS  PubMed  Google Scholar 

  26. Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase fromPhanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem 196:101–106

    Article  CAS  PubMed  Google Scholar 

  27. Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase fromPhanerochaete chrysosporium is primarily an Fe(III) reductase: kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138

    Article  CAS  PubMed  Google Scholar 

  28. Stahl JD, Aust SD (1995) Properties of a transplasma membrane redox system ofPhanerochaete chrysosporium. Arch Biochem Biophys 320:369–374

    Article  CAS  PubMed  Google Scholar 

  29. Khindaria A, Grover TA, Aust AD (1994) Oxalate-dependent reductive activity of manganese peroxidase fromPhanerochaete chrysosporium. Arch Biochem Biophys 314:301–306

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Prestera T, Prochaska HJ, Talalay P (1992) Inhibition of NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue and related anthraquinone dyes: a structure-activity study. Biochemistry 31:824–833

    Article  CAS  PubMed  Google Scholar 

  32. Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Article  CAS  PubMed  Google Scholar 

  33. Hassan HM, Fridovich I (1979) Paraquat andEscherichia coli: mechanism of production of extracellular superoxide radical. J Biol Chem 254:10846–10852

    CAS  PubMed  Google Scholar 

  34. Sparla F, Tedeschi G, Trost P (1996) NAD(P)H-(quinone-acceptor) oxidoreductase of tobacco leaves is a flavin mononucleotide-containing flavoenzyme. Plant Physiol 112:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Helm D, Winkelmann G (eds) Metal ions in fungi. Dekker, New York, pp 39–98

    Google Scholar 

  36. Hirano T, Tanaka H, Enoki A (1995) Extracellular substance from the brown rot basidiomyceteTyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41:334–341

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Kondo, R. & Sakai, K. NADPH-dependent ferrireductase produced by white-rot fungusPhanerochaete sordida YK-624. J Wood Sci 44, 369–374 (1998). https://doi.org/10.1007/BF01130449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130449

Key words