Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Knotwood and bark extracts: strong antioxidants from waste materials


The antioxidant properties of hydrophilic extracts of knotwood of several industrially important tree species were evaluated by lipid-peroxidation inhibition and peroxyl-trapping capacity tests. The results were compared with the antioxidant properties of hydrophilic extracts of bark, and pure lignans and flavonoids isolated from knotwood extracts. The knot extracts from several tree species were stronger antioxidants than the bark extracts, which can, however, also be classified as strong antioxidants. In addition, the antioxidant properties of most of the knotwood extracts are stronger than the pure compounds. It is concluded that knotwood is a rich source of natural antioxidants.


  1. 1.

    Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B (2004) Bioactive phenolic substances in important tree species. Part 2. Knots and stemwood of fir species. Holzforschung 58:650–659

    Google Scholar 

  2. 2.

    Willför S, Hemming J, Reunanen M, Eckerman C, Holmbom B (2003) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57:27–36

    Google Scholar 

  3. 3.

    Willför S, Hemming J, Reunanen M, Holmbom B (2003) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57:359–372

    Google Scholar 

  4. 4.

    Pietarinen S, Willför S, Vikström F, Holmbom B (2004) Aspen knots, a rich source of flavonoids. XXII International Conference on Polyphenols, Helsinki, Finland, pp 669-670

  5. 5.

    Pietarinen SP, Willför SM, Vikström, FA, Holmbom BR (2006) Aspen knots, a rich source of flavonoids. J Wood Chem Technol (in press)

  6. 6.

    Pietarinen S, Willför S, Sjöholm R, Holmbom B (2005) Bioactive phenolic substances in important tree species. Part 3. Knots and stemwood of Acacia crassicarpa and A. mangium. Holzforschung 59:94–101

    CAS  Article  Google Scholar 

  7. 7.

    Willför SM, Ahotupa MO, Hemming JE, Reunanen MH, Eklund PC, Sjöholm RE, Eckerman CS, Pohjamo SP, Holmbom BR (2003) Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J Agric Food Chem 51:7600–7606

    Article  PubMed  Google Scholar 

  8. 8.

    Lindberg L, Willför S, Hemming J, Holmbom B (2004) Antibacterial effects of hydrophilic knotwood extracts on papermill bacteria. J Ind Microbiol Biotechnol 31:137–147

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Bergman J, Lindgren BO, Svahn CM (1965) Triterpenes and 4-alpha-methylsterols in birch wood. Acta Chem Scand 19:1661–1666

    CAS  Article  Google Scholar 

  10. 10.

    Stojanovic S, Brede O (2002) Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene. Phys Chem Chem Phys 4:757–764

    CAS  Article  Google Scholar 

  11. 11.

    Schultz TP, Nicholas DD (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47–52

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Schultz TP, Nicholas DD (2002) Development of environmentally benign wood preservatives based on combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61:555–560

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Backa S, Gierer J, Reitberger T, Nilsson T (1992) Hydroxyl radical activity in brown-rot fungi studied by a new chemiluminescence method. Holzforschung 46:61–67

    CAS  Article  Google Scholar 

  14. 14.

    Backa S, Gierer J, Reitberger T, Nilsson T (1993) Hydroxyl radical activity associated with the growth of white-rot fungi. Holzforschung 47:181–187

    CAS  Article  Google Scholar 

  15. 15.

    Hopia A, Heinonen M (1999) Antioxidant activity of flavonoid aglycones and their glycosides in methyl linoleate. J Am Oil Chem Soc 76:139–144

    CAS  Article  Google Scholar 

  16. 16.

    Pietta P (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    CAS  Article  Google Scholar 

  18. 18.

    Taskinen A, Eklund P, Sjöholm E, Hotokka M (2004) The molecular structure and some properties of hydroxymatairesinol. An ab initio study. J Mol Struct 667:113–124

    Article  Google Scholar 

  19. 19.

    Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571

    CAS  Article  Google Scholar 

  20. 20.

    Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S (2004) Knots in trees — a new rich source of lignans. Phytochem Rev 3:331–340

    Google Scholar 

  21. 21.

    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  Google Scholar 

  22. 22.

    Polya GM, Foo LY (1994) Inhibition of eukaryote signal-regulated protein kinases by plant-derived catechin-related compounds. Phytochemistry 35:1399–1405

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Tan YM, Yu R, Pezzuto JM (2003) Betulinic acid-induced programmed cell death in human melanoma cell involves mitogen-activated protein kinase activation. Clin Cancer Res 9:2866–2875

    CAS  PubMed  Google Scholar 

  24. 24.

    Packer L, Rimbach G, Virgili F (1999) Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Biol Med 27:704–724

    CAS  Article  Google Scholar 

  25. 25.

    Eklund P, Sillanpää R, Sjöholm R (2002) Synthetic transformation of hydroxymatairesinol from Norway spruce (Picea abies) to 7-hydroxysecoisolariciresinol, (+)-lariciresinol and (+)-cyclolariciresinol. J Chem Soc Perkin Trans 1:1906–1910

    Article  Google Scholar 

  26. 26.

    Ahotupa M, Mäntylä E, Kangas L (1997) Antioxidant properties of the triphenylethylene antiestrogen drug toremifene. Naunyn-Schmiederberg’s Arch Pharmacol 356:297–302

    CAS  Article  Google Scholar 

  27. 27.

    Eklund PC, Långvik OK, Wärnå JP, Salmi TO, Willför SM, Sjöholm RE (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem 3:3336–3347

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Heinonen M, Rein D, Satue-Gracia MT, Huang S-W, German JB, Frankel EN (1998) Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. J Agric Food Chem 46:917–922

    CAS  Article  Google Scholar 

  29. 29.

    De Bruyne T, Pieters L, Deelstra H, Vlietinck A (1999) Condensed vegetable tannins: biodiversity in structure and biological activities. Biochem Syst Ecol 27:445–459

    Article  Google Scholar 

  30. 30.

    Shimizu K, Kondo R, Sakai K (2002) Antioxidant activity of heartwood extracts of Papua New Guinean woods. J Wood Sci 48:446–450

    CAS  Article  Google Scholar 

  31. 31.

    Merillon J, Fauconneau B, Teguo PW, Barrier L, Vercauteren J, Huguet F (1997) Antioxidant activity of the stilbene astringin, newly extracted from Vitis vinifera cell cultures. Clin Chem 43:1092–1093

    CAS  PubMed  Google Scholar 

  32. 32.

    Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability — a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Suvi P. Pietarinen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pietarinen, S.P., Willför, S.M., Ahotupa, M.O. et al. Knotwood and bark extracts: strong antioxidants from waste materials. J Wood Sci 52, 436–444 (2006).

Download citation

Key words

  • Knots
  • Bark
  • Lignans
  • Flavonoids
  • Antioxidants