Skip to main content

Official Journal of the Japan Wood Research Society

  • Review Article
  • Published:

Look back over the studies of lignin biochemistry

Abstract

The role of the cinnamate pathway in monolignol biosynthesis based on feeding experiments with lignifying plant stems and characterization of the enzymes in the pathway, O-methyltransferase (OMT), cinnamyl alcohol dehydrogenase (CAD), etc. is discussed. Monolignol biosynthesis via metabolic grids according to newly characterized enzymes in the pathway is also reviewed and discussed. The cleavage mechanisms of side chains and aromatic rings by lignin peroxidase and laccase elucidated by using 18O, 2H, and 13C labeled lignin substructure dimers and DHP with 18O2 and H2 18O are reviewed. Finally, the prospects of lignin biochemistry in the wood and paper industries are discussed according to the recent progress on gene technology on wood formation and microbial degradation of lignin.

References

  1. Higuchi T (1998) Discovery of lignin. In: Kung S-D, Yang S-F (eds) Discoveries in plant biology. World Scientific, Singapore, pp 233–269

    Google Scholar 

  2. Higuchi T (2000) The present state and problems in lignin biosynthesis. Cellulose Chem Technol 34:79–100

    CAS  Google Scholar 

  3. Higuchi T (2002) Biochemistry of wood components: biosynthesis and microbial degradation of lignin.Wood Res 89:43–51

    CAS  Google Scholar 

  4. Higuchi T (2003) Pathways for monolignol biosynthesis via metabolic grids: coniferyl aldehyde 5-hydroxylase, a possible key enzyme in angiosperm syringyl lignin biosynthesis. Proc Jpn Acad 79:227–236

    CAS  Google Scholar 

  5. Brown SA (1961) Chemistry of lignification. Science 134:305–313

    Article  CAS  PubMed  Google Scholar 

  6. Brown SA, Neish AC (1955) Shikimic acid as a precursor in lignin biosynthesis. Nature 175:688–690

    Article  CAS  PubMed  Google Scholar 

  7. Brown SA, Neish AC (1959) Studies on lignin biosynthesis using isotopic carbon VIII. Isolation of radioactive hydrogenolysis products of lignins. J Am Chem Soc 81:2419–2424

    Article  CAS  Google Scholar 

  8. Higuchi T (1959) Studies on the biosynthesis of lignin. In: Kratzl K, Billek G (eds) Proceedings of the 4th International Congress of Biochemistry, Vienna 1–6 September 1958, Vol II. Biochemistry of wood. Pergamon, NY, pp 161–188

    Google Scholar 

  9. Higuchi T (1962) Studies on lignin biosynthesis using isotopic carbon X. Formation of lignin from phenylpropanoids in tissue culture of white pine. Can J Biochem Physiol 40:31–34

    CAS  PubMed  Google Scholar 

  10. Higuchi T, Brown SA (1963) Studies on lignin biosynthesis using isotopic carbon XII. The biosynthesis and metabolism of sinapic acid. Can J Biochem Physiol 41:612–620

    Google Scholar 

  11. Higuchi T, Brown SA (1963) Studies on lignin biosynthesis using isotopic carbon XIII. The phenylpropanoid system in lignification. Can J Biochem Physiol 41:621–628

    CAS  PubMed  Google Scholar 

  12. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  13. Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, Berlin Heidelberg New York, pp 154–180

    Google Scholar 

  14. Mansell RL, Stöckigt J, Zenk MH (1972) Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant. Z Pflanzenphysiol 68:286–288

    CAS  Google Scholar 

  15. Ebel J, Grisebach H (1973) Reduction of cinnamic acids to cinnamyl alcohols with an enzyme preparation from cell suspension cultures of soy bean (Glycine max.). FEBS Lett 30:141–143

    Article  CAS  PubMed  Google Scholar 

  16. Kutsuki H, Shimada M, Higuchi T (1982) Distribution and role of p-hydroxycinnamate:CoA ligase in lignin biosynthesis. Phytochemistry 21:267–271

    Article  CAS  Google Scholar 

  17. Kutsuki H (1981) Biochemical differences in the formation of angiosperm and gymnosperm lignins. PhD thesis, Kyoto University

  18. Kutsuki H, Shimada M, Higuchi T (1982) Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21:19–23

    Article  CAS  Google Scholar 

  19. Higuchi T, Ito Y (1958) Dehydrogenation products of coniferyl alcohol formed by the action of mushroom phenol oxidase, rhuslaccase and radish peroxidase. J Biochem (Jpn) 45:575–579

    CAS  Google Scholar 

  20. Neish AC (1961) The formation of m-and p-coumaric acid by enzymatic deamination of the corresponding isomers of tyrosine. Phytochemistry 1:1–24

    Article  CAS  Google Scholar 

  21. Schoch G, Geopfert S, Morant M, Hehn A, Meyer Dulmann P, Werck-Reichart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters. A missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  CAS  PubMed  Google Scholar 

  22. Ye Z-H, Zhong R, Morison WH, Himmelsbach DS (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57:1177–1185

    Article  CAS  PubMed  Google Scholar 

  23. Zhong R, Morison WH, Himmelsbach DS, Poole FL, Ye Z-H (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Article  CAS  PubMed  Google Scholar 

  24. Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferlaldehyde 5-hydroxylase and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  CAS  PubMed  Google Scholar 

  25. Grand C (1984) Ferulic acid 5-hydroxylase: a new cytochrome P-450 dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett 169:7–11

    Article  CAS  Google Scholar 

  26. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    Article  CAS  PubMed  Google Scholar 

  27. Meyer K, Cusumano JC, Sommerville C, Chapple C (1996) Ferulate 5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450 dependent monooxygenase. Proc Natl Acad Sci USA 93:6869–6874

    Article  CAS  PubMed  Google Scholar 

  28. Yamauchi K, Yasuda S, Hamada K, Tsutsumi Y, Fukushima K (2003) Multiform biosynthetic pathway of syringyl lignin in angiosperms. Planta 216:496–501

    CAS  PubMed  Google Scholar 

  29. Umezawa T (2005) Biosynthesis of lignans, lignins, and norlignans. Kagaku to Seibutsu 43:461–467

    CAS  Google Scholar 

  30. Yamauchi K, Yasuda S, Fukushima K (2002) Evidence for the biosynthetic pathway from sinapic acid to syringyl lignin using labeled sinapic acid with stable isotope at both methoxyl groups in Robinia pseudoacacia and Nerium indicum. J Agric Food Chem 50:3222–3227

    Article  CAS  PubMed  Google Scholar 

  31. Onnerud H, Zhang L, Gellerstedt G, Henriksson G (2002) Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis. Plant Cell 14:1953–1962

    Article  CAS  PubMed  Google Scholar 

  32. Umezawa T, Higuchi T (1987) Formation of a muconate in aromatic ring cleavage of a β-O-4 lignin substructure model by lignin peroxidase. Agric Biol Chem 51:2282–2284

    Google Scholar 

  33. Umezawa T, Higuchi T (1985) Aromatic ring cleavage in degradation of β-O-4 lignin substructure by Phanerochaete chrysosporium. FEBS Lett 182:257–259

    Article  CAS  Google Scholar 

  34. Umezawa T, Higuchi T (1989) Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 2424:325–329

    Article  Google Scholar 

  35. Umezawa T, Higuchi T (1991) Chemistry of lignin degradation by lignin peroxidases. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. ACS Symposium Series 460, American Chemical Society, pp 236–246

  36. Higuchi T (1993) Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotechnol 30:1–8

    Article  CAS  Google Scholar 

  37. Higuchi T (2004) Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Proc Jpn Acad 80:204–214

    Article  CAS  Google Scholar 

  38. Aloni I, Quinn M, Shoop K, Cyr SS, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff RR, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    Article  Google Scholar 

  39. Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlen M, Teeri TT, Lundberg J, Sundberg B, Nisson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    Article  CAS  PubMed  Google Scholar 

  40. Raes J, Rohde A, Christensen JH, de Peer YV, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  Google Scholar 

  41. Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene ezxpression programs during transdifferentiation of esophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    Article  PubMed  Google Scholar 

  42. Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7:737–742

    Article  CAS  PubMed  Google Scholar 

  43. Hu WJ, Harding SA, Lung J, Popko L, Ralph J, Stokke DD, Tsai GJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  44. Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185

    Article  CAS  PubMed  Google Scholar 

  45. Glasser WG (1989) Lignin-based polymers. In: Schniewind AP, Cahn RW, Bever MB (eds) Concise encyclopedia of wood and wood-based materials. Pergamon, NY, pp 165–170

    Google Scholar 

  46. Martinez AT (2002) Molecular biology and structure-function of lignin degrading heme peroxidase. Enzyme Microb Technol 30: 425–444

    Article  CAS  Google Scholar 

  47. Akhtar M, Attridge MC, Myers GC, Kirk TK (1992) Biochemical pulping of loblolly pine with different strains of the white-rot fungus Ceriporiopsis subvermispora. TAPPI J 75:105–109

    CAS  Google Scholar 

  48. Kirk TK, Blanchett RA, Akhtar M (1994) Biopulping seven years of consortia research. TAPPI Proc 66:57–66

    Google Scholar 

  49. Kirk TK (1994) Technical overview of forest biotechnology research in the US. TAPPI Proc 66:1–4

    Google Scholar 

  50. Messner K, Srebotnik E (1994) Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev 13:351–364

    Article  CAS  Google Scholar 

  51. Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breeding 2:25–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, T. Look back over the studies of lignin biochemistry. J Wood Sci 52, 2–8 (2006). https://doi.org/10.1007/s10086-005-0790-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-005-0790-z

Key words