Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Analysis of the temperature dependence of water sorption for wood on the basis of dual mode theory

Abstract

Isotherm curves of water sorption for wood at various temperatures were analyzed based on the dual mode theory where the total coverage was represented by a linear combination of the Langmuir and Henry equations. The saturation concentration and affinity constant of the Langmuir equation and the parameter of Henry’s law had a transition point near 60°C. The analysis based on the dual mode theory found that the constants for whole wood were related to those of wood components and depended more on their glass transition temperatures. That is, it was theoretically demonstrated that the characteristic tem-perature dependence of water sorption for wood occurs because wood consists of three components (cellulose, hemicellulose, and lignin) with different glass transition temperatures.

References

  1. Stamm AJ (1953) Chemical processing of wood. New York Chemical, New York, pp 113–138

    Google Scholar 

  2. Christensen GN, Kelsey KE (1959) Die Sorption von Wasserdampf durch die chemischen Bestandteile des Holyes. Holz Roh Werkst. 17:189–203

    Article  Google Scholar 

  3. Weichret L (1963) Untersuchungen über das Sorptions-und Quellungsuerhalten von Eiche. Holz Roh Werkst 21:290–300

    Article  Google Scholar 

  4. Skaar C (1972) Water in wood. Syracuse University Press, pp 171-204

  5. Hailwood J, Horrobin S (1946) Trans Faraday Soc 42B:84–92

    Article  CAS  Google Scholar 

  6. Spalt HA (1958) Water vapor sorption by wood. Forest Prod J 8:288–295

    CAS  Google Scholar 

  7. Simpson WT (1971) Equilibrium moisture content prediction for wood. Forest Prod J 21:48–49

    Google Scholar 

  8. Norimoto M, Yamada T (1977) Dielectric behavior of water adsorpted on MWL. Mokuzai Gakkaishi 23:99–106

    CAS  Google Scholar 

  9. Minato K (1993) Moisture adsorption characteristics of medium-density fiberboard and its raw wood fiber treated with formalde-hyde. Mokuzai Gakkaishi 39:1162–1168

    Google Scholar 

  10. Yasuda R, Minato K, Norimoto M (1995) Moisture adsorption thermodynamics of chemically modified wood. Holzforschung 49:548–554

    Article  CAS  Google Scholar 

  11. Meares P (1954) The diffusion of gases through polyvinyl acetate. J Am Chem Soc 76:3415–3422

    Article  CAS  Google Scholar 

  12. Meares P (1957) The diffusion of gases in polyvinyl acetate in relation to the second-order transition. Trans Faraday Soc 53:101–106

    Article  CAS  Google Scholar 

  13. Michaels AS, Vieth WR, Barrie A (1963) Solution of gases in polyethylene terephthalate. J Appl Phys 34:13–20

    Article  CAS  Google Scholar 

  14. Koros WJ, Paul DR (1978) CO2 sorption in poly (ethylene terephthalate) above and below the glass transition. J Polym Sci 16:1947–1963

    CAS  Google Scholar 

  15. Kamiya Y, Mizoguchi K, Naito Y, Hirose T (1986) Gas sorption on poly (vinyl benzoate). J Polym Sci 24:535–547

    Article  CAS  Google Scholar 

  16. Kamiya Y, Hirose T, Mizoguchi K, Naito Y (1986) Gravimetric study of high pressure sorption of gases in polymers. J Polym Sci 24:1525–1539

    Article  CAS  Google Scholar 

  17. Kamiya Y (1997) Gas sorption and dilation of polymers. J Nat Inst Mater Chem Res 5:121–134

    CAS  Google Scholar 

  18. Suwandi MS, Stern SA (1973) Transport of heavy organic vapor through silicone rubber. J Polym Sci 11:663–681

    CAS  Google Scholar 

  19. US Department of Agriculture (1974) Wood handbook. US Department of Agriculture Forest Service, Madison, WI

    Google Scholar 

  20. Goring DIA (1963) Thermal softening of lignin, hemicellulose, and cellulose. Pulp Pap Canada December:T517-T527

  21. Back EL, Salmen NL (1982) Glass transitions of wood components hold implications for molding and pulping processes. TAPPI 65:107–110

    Google Scholar 

  22. Salmen NL, Back EL (1977) The influence of water on the glass transition temperature of cellulose. TAPPI 60:137–140

    CAS  Google Scholar 

  23. Salmen NL, Back EL (1980) Moisture dependent thermal softening of paper, evaluated by its elastic modulus. TAPPI 63:117–120

    CAS  Google Scholar 

  24. Hillis WE, Rozsa AN (1978) The softening temperatures of wood. Holzforschung 32:68–73

    Article  Google Scholar 

  25. Irvine GM (1980) The glass transition of lignin and its relevance to thermomechanical pulping. CSIRO division of chemical researching review, pp 33-43

  26. Kelley SS, Timothy GR, Glasser WG (1987) Relaxation behaviour of the amorphous components of wood. J Mater Sci 22:617–624

    Article  CAS  Google Scholar 

  27. Furuta Y, Aizawa H, Yano H, Norimoto M (1997) Thermal-softening properties of water-swollen wood (IV). Mokuzai Gakkaishi 43:725–730

    CAS  Google Scholar 

  28. Nakano T (2002) Effects of cell structure on water sorption for wood. Holzforschung 57:213–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takato Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, T. Analysis of the temperature dependence of water sorption for wood on the basis of dual mode theory. J Wood Sci 52, 490–495 (2006). https://doi.org/10.1007/s10086-006-0807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0807-2

Key words