Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica II: feeding experiments with 14C labeled precursors

Abstract

To clarify the biosynthetic pathway for syringyl lignans, especially syringyl tetrahydronaphthalene lignans and formation of the C2–C7′ linkage, production of (+)-lyoniresinol (LYR) and its predicted intermediates [syringaresinol (SYR), 5,5′-dimethoxylariciresinol (DMLR), and 5,5′-dimethoxysecoisolariciresinol (DMSLR)] in Lyonia ovalifolia var. elliptica was investigated by means of feeding experiments with radiolabeled precursors. Following individual administration of l-[U-14C]phenylalanine (Phe), [8-14C]sinapyl alcohol (SA), and [8,8′-14C]SYR to excised young shoots of L. ovalifolia and their subsequent metabolism, free [14C]lignans and [14C]lignan glycosides were extracted with methanol from stems and leaves and were divided into ethyl acetate-soluble fractions (lignans) and aqueous fractions (lignan glycosides), respectively. Using a combination of xylanase, cellulase, and β-glucosidase, the glycosides were hydrolyzed to liberate [14C]lignans as aglycones. l-[U-14C]Phe was incorporated into (+)-[14C]SYR [stem 0.38%, 8% enantiomeric excess (e.e.)], (−)-[14C]SYR (leaves 2.75%, 72% e.e.), (+)-[14C]DMLR (stem 0.07%, 18% e.e. and leaves 0.009%, 58% e.e.), (−)-[14C]DMSLR (stem 0.03%, 46% e.e. and leaves 0.05%, 20% e.e.), (+)-[14C]LYR (leaves 0.013%, 22% e.e.) and glycosides of (+)-[14C]LYR (stem 0.036%, 50% e.e.) in 24h. Based on the percent incorporation and enantiomeric composition of the lignans, the biosynthetic pathway of (8R,8′R)-(+)-LYR was proposed as follows: a nonselective dehydrogenative dimerization of sinapyl alcohol yields (±)-SYR, which is reduced with low specificity to give (8R,8′R)-(+)-DMLR. This is cyclized to directly give (+)-LYR as well as reduced again to (8R,8′R)-(−)-DMSLR. Although further transformation of (−)-DMSLR also leads to the formation of (+)-LYR, cyclization could be a main pathway for (+)-LYR biosynthesis.

References

  1. Davin LB, Lewis NG (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:398–406

    Article  CAS  PubMed  Google Scholar 

  2. Beutner KR, Ferenczy A (1997) Therapeutic approaches to genital warts. Am J Med 102:28–37

    Article  CAS  PubMed  Google Scholar 

  3. Rivera A, Tyring SK (2004) Therapy of cutaneous human Papillomavirus infections. Dermatol Ther 17:441–448

    Article  PubMed  Google Scholar 

  4. Thatcher N, Eckardt J, Green M (2003) Options for first-and second-line therapy in small cell lung cancer — a workshop discussion. Lung Cancer 41:S37–S41

    Article  PubMed  Google Scholar 

  5. Stewart DJ (2004) Topotecan in the first-line treatment of small cell lung cancer. Oncologist 9:33–42

    Article  CAS  PubMed  Google Scholar 

  6. Meresse P, Dechaux E, Monneret C, Bertounesque E (2004) Etoposide: discovery and medicinal chemistry. Curr Med Chem 11:2443–2466

    Article  CAS  PubMed  Google Scholar 

  7. Ohe Y (2004) Chemoradiotherapy for lung cancer: current status and perspectives. Int J Clin Oncol 9:435–443

    Article  CAS  PubMed  Google Scholar 

  8. Rooseboom M, Commandeur JNM, Vermeulen NPE (2004) Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 56:53–102

    Article  CAS  PubMed  Google Scholar 

  9. Adlercreutz H (2003) Phytoestrogens and breast cancer. J Steroid Biochem Mol Biol 83:113–118

    Article  Google Scholar 

  10. Boccardo F, Lunardi G, Guglielmini P, Parodi M, Murialdo R, Schettini G, Rubagotti A (2004) Serum enterolactone levels and the risk of breast cancer in women with palpable cysts. Eur J Cancer 40:84–89

    Article  CAS  PubMed  Google Scholar 

  11. Rickard-Bon SE, Thompson LU (2003) The role of flaxseed lignans in hormone-dependent and independent cancer. In: Muir AD, Westcott ND (eds) Flax: the genus Linum. Medicinal and aromatic plants — industrial profiles, vol 34. Taylor and Francis, London, pp 181–203

    Google Scholar 

  12. Chen J, Hui E, Ip T, Thompson LU (2004) Dietary flaxseed enhances the inhibitory effect of tamoxifen on the growth of estrogen-dependent human breast cancer (MCF-7) in nude mice. Clin Cancer Res 10:7703–7711

    Article  CAS  PubMed  Google Scholar 

  13. Jolad SD, Hoffman JJ, Cole JR, Tempesta MS, Bates RB (1980) Cytotoxic agent from Penstemon deustus (Scrophulariaceae): isolation and stereochemistry of liriodendrin, a symmetrically substituted furofuranoid lignan diglucoside. J Org Chem 45:1325–1329

    Google Scholar 

  14. Nishibe S, Kinoshita H, Takeda H, Okano G (1990) Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming stressed rats. Chem Pharm Bull 38:1763–1765

    Article  CAS  PubMed  Google Scholar 

  15. Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19:1227–1230

    Article  CAS  PubMed  Google Scholar 

  16. Von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66:1254–1263

    Article  Google Scholar 

  17. Takemoto M, Fukuyo A, Aoshima Y, Tanaka K (2006) Syntheses of lyoniresinol with combined utilization of synthetic chemistry and biotechnological methods. Chem Pharm Bull 54: 226–229

    Article  CAS  PubMed  Google Scholar 

  18. Kato Y (1963) Structure of lyoniresinol (dimethoxyisolariciresinol). Chem Pharm Bull 11:823–827

    Article  CAS  PubMed  Google Scholar 

  19. Kato Y, Kato N, Baba M (1984) Phenolic constitiuents of Lyonia ovalifolia. Pharmazie 39:425–426

    CAS  Google Scholar 

  20. Rahman MD A, Katayama T, Suzuki T, Nakagawa T (2007) Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica I: isolation and stereochemistry of syringyl lignans and predicted precursors to (+)-lyoniresinol from wood. J Wood Sci DOI: 10.1007/s10086-006-0832-1

  21. Umezawa T, Davin LB, Yamamoto E, Kingston DGL, Lewis NG (1990) Lignan biosynthesis in Forsythia species. J Chem Soc Chem Commun 1405-1408

  22. Davin LB, Bedgar DL, Katayama T, Lewis NG (1992) On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31:3869–3874

    Article  CAS  PubMed  Google Scholar 

  23. Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (−)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry 31:3875–3881

    Article  CAS  PubMed  Google Scholar 

  24. Katayama T, Davin LB, Chu A, Lewis NG (1993) Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia. Phytochemistry 33:581–591

    Article  CAS  Google Scholar 

  25. Katayama T, Davin LB, Lewis NG (1993) Lignan biosynthesis I: enzymology of stereoselective phenylpropanoids coupling and post-coupling modifications in Forsythia species. Proceedings of 7th International Symposium on Wood and Pulping Chemistry, Beijing, Vol 2, pp 984–992

    Google Scholar 

  26. Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia: protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J Biol Chem 271:29473–29482

    Article  CAS  PubMed  Google Scholar 

  27. Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  28. Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor of Podophyllum lignans. Phytochemistry 30:1489–1492

    Article  CAS  Google Scholar 

  29. Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549

    Article  CAS  PubMed  Google Scholar 

  30. Katayama T, Ogaki A (2001) Biosynthesis of (+)-syringaresinol in Liriodendron tulipifera I: feeding experiments with l-[U-14C]phenylalanine and [8-14C]sinapyl alcohol. J Wood Sci 47:41–47

    Article  CAS  Google Scholar 

  31. Lourith N, Katayama T, Ishikawa K, Suzuki T (2005) Biosynthesis of syringyl 8-O-4′ neolignans in Eucomia ulmoides: formation of syringylglycerol-8-O-4′-(sinapyl alcohol) ether from sinapyl alcohol. J Wood Sci 51:379–386

    Article  CAS  Google Scholar 

  32. Quideau S, Ralph J (1992) Facile large-scale synthesis of coniferyl, sinapyl and p-coumaryl alcohol. J Agric Food Chem 40:1108–1110

    Article  CAS  Google Scholar 

  33. Katayama T, Masaoka T (1997) Biosynthesis and stereochemistry of lignans in Zanthoxylum ailanthoides. I. (+)-Lariciresinol formation by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi 43:580–588

    CAS  Google Scholar 

  34. Katayama Y, Fukuzumi T (1978) Enzymatic synthesis of three lignin-related dimers by an improved peroxidase-hydrogen peroxide system (in Japanese). Mokuzai Gakkaishi 24:664–667

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Katayama.

Additional information

This report was presented at the IAWPS 2005 International Symposium on Wood Science and Technology, Yokohama, November 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.A., Katayama, T., Suzuki, T. et al. Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica II: feeding experiments with 14C labeled precursors. J Wood Sci 53, 114–120 (2007). https://doi.org/10.1007/s10086-006-0833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0833-0

Key words