Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Pyrolysis reactions of various lignin model dimers

Abstract

Primary pyrolysis reactions and relative reactivities for depolymerization and condensation/carbonization were evaluated for various lignin model dimers with α-O-4, β-O-4, β-1, and biphenyl substructures by characterizing the tetrahydrofuran (THF)-soluble and THF-insoluble fractions obtained after pyrolysis at 400°C. Reactivity was quite different depending on the model structure: depolymerization: α-O-4 [phenolic (ph), nonphenolic (nonph)], β-O-4 (ph) > β-O-4 (nonph), β-1 (ph, nonph) > biphenyl (ph, nonph); condensation/carbonization: β-1 (ph) > β-O-4 (ph) > α-O-4 (ph) > β-O-4 (nonph), biphenyl (ph, nonph), α-O-4 (nonph), β-1 (nonph). Major degradation pathways were also identified for β-O-4 and β-1 model dimers: β-O-4 types: Cβ-O cleavage to form cinnamyl alcohols and phenols and Cγ-elimination yielding vinyl ethers; β-1 types: Cα-Cβ cleavage yielding benzaldehydes and styrenes and Cγ-elimination yielding stilbenes. Relative reactivities of these pathways were also quite different between phenolic and nonphenolic forms even in the same types; Cβ-O cleavage (β-O-4) and Cγ-elimination (β-1) were substantially enhanced in phenolic forms.

References

  1. Kawamoto H, Murayama M, Saka S (2003) Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation. J Wood Sci 49:469–473

    Article  CAS  Google Scholar 

  2. Kawamoto H, Hatanaka W, Saka S (2003) Thermochemical conversion of cellulose in polar solvent (sulfolane) into levoglucosan and other low molecular-weight substances. J Anal Appl Pyrolysis 70:303–313

    Article  CAS  Google Scholar 

  3. Kawamoto H, Saka S (2006) Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane. J Anal Appl Pyrolysis 76:280–284

    Article  CAS  Google Scholar 

  4. Kawamoto H, Saito S, Hatanaka W, Saka S (2006) Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts. J Wood Sci DOI: 10.1007/s10086-006-0835-y

  5. Ramiah MV (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14:1323–1337

    Article  CAS  Google Scholar 

  6. Stahl E, Karig F, Brögmann U, Nimz H, Becker H (1973) Thermofractography of lignin and its use for rapid analysis on the ultra-micro-scale. Holzforschung 27:89–92

    Article  CAS  Google Scholar 

  7. Karig VF, Stahl E (1974) Über den Einfluß der Thermolysebedingungen auf funktionelle Gruppen bei der Thermofraktographie von Ligninen. Holzforschung 28:201–203

    Article  CAS  Google Scholar 

  8. Fenner RA, Lephardt JO (1981) Examination of the thermal decomposition of Kraft lignin by Fourier transform infrared evolved gas analysis. J Agric Food Chem 29:846–849

    Article  CAS  Google Scholar 

  9. Jakab E, Faix O, Till F, Székely T (1995) Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. J Anal Appl Pyrolysis 35:167–179

    Article  CAS  Google Scholar 

  10. Jakab E, Faix O, Till F (1997) Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrolysis 40-41:171–186

    Article  Google Scholar 

  11. Haw JF, Schultz TP (1985) Carbon-13 CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39:289–296

    Article  CAS  Google Scholar 

  12. Domburg GE, Sergeeva VN, Zheibe GA (1970) Thermal analysis of some lignin model compounds. J Therm Anal 2:419–428

    Article  Google Scholar 

  13. Domburg GE, Rossinskaya G, Sergeeva V (1974) Study of thermal stability of b-ether bonds in lignin and its models. Proceedings of the 4th International Conference on Thermogravimetric Analysis, 2:211–220

    Google Scholar 

  14. Domburg GE, Rossinskaya G, Dobele G (1975) Thermoanalytical study of model lignin compounds. V. Thermal decomposition of acetovanillone benzyl ether and pinoresinol. Koksnes Kimija 87-94

  15. Klein MT, Virk PS (1981) Model pathways of lignin thermolysis. Report MIT-EL81-005

  16. Brežný R, Mihálov V, Kváčik V (1983) Low temperature thermolysis of lignins. I. Reactions of β-O-4 model compounds. Holzforschung 37:199–204

    Article  Google Scholar 

  17. Adler E (1977) Lignin chemistry — past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  18. Nakatsubo F, Sato K, Higuchi T (1975) Synthesis of guaiacylglycerol-β-guaiacyl ether. Holzforschung 29:165–168

    Article  CAS  Google Scholar 

  19. Kristersson P, Lundquist K (1980) A new synthetic route to lignin model compounds of the 1,2-diaryl-1,3-propanediol type. Acta Chem Scand B34:213–234

    Article  CAS  Google Scholar 

  20. Li S, Lundquist K, Stomberg R (1993) Synthesis of 1,2-bis(3,4-dimethoxyphenyl)-1,3-propanediol starting from trans-1,3-bis(3,4-dimethoxyphenyl)-2,3-epoxy-1-propanone. Acta Chem Scand 47:867–871

    Article  CAS  Google Scholar 

  21. Kratzl K, Vierhapper FW (1971) Synthese von 14C-kernmarkierten Vanillinen und Bikreosolen. Monatsh Chem 102:425–430

    Article  CAS  Google Scholar 

  22. Yaguchi T, Hosoya S, Nakano J, Satoh A, Nomura Y, Nakamura M (1979) Mechanism of rapid delignification during alkaline cooking with addition of tetrahydroanthraquinone. Mokuzai Gakkaishi 25:239–240

    CAS  Google Scholar 

  23. Gierer J, Lenic J, Norén I, Szabo-Lin I (1974) Lignin chromophores. Part I. Synthesis of chromophores of the 2,4′-and 4,4′-dihydroxystilbene types. Acta Chem Scand B28:717–729

    Article  Google Scholar 

  24. Szabo-Lin I, Teder A (1976) Absorption bands in the electronic spectra of lignin model compounds. Part 2. Stilbenes. Sven Papperstidn 5:153–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kawamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamoto, H., Horigoshi, S. & Saka, S. Pyrolysis reactions of various lignin model dimers. J Wood Sci 53, 168–174 (2007). https://doi.org/10.1007/s10086-006-0834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0834-z

Key words