Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles

Abstract

The morphological, physical, and mechanical properties of the nonwood plant fiber bundles of ramie, pineapple, sansevieria, kenaf, abaca, sisal, and coconut fiber bundles were investigated. All fibers except those of coconut fiber had noncircular cross-sectional shapes. The crosssectional area of the fiber bundles was evaluated by an improved method using scanning electron microscope images. The coefficient factor defined as the ratio of the cross-sectional area determined by diameter measurement, to the cross-sectional area determined by image analysis was between 0.92 and 0.96 for all fibers. This indicated that the area determined by diameter measurement was available. The densities of the fiber bundles decreased with increasing diameters. The diameters of each fiber species had small variation of around 3.4%-9.8% within a specimen. The tensile strength and Young’s modulus of ramie, pineapple, and sansevieria fiber bundles showed excellent values in comparison with the other fibers. The tensile strength and Young’s modulus showed a decreasing trend with increasing diameter of fiber bundles.

References

  1. Kessler RW, Kohler R (1996) New strategies for exploiting flax and hemp. Chemtec 26:34–42

    Google Scholar 

  2. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  3. Nechtawal A, Mieck K-P, Reussmann T (2003) Developments in the characterization of natural fiber properties and in the use of natural fibers for composites. Compos Sci Technol 63:1273–1279

    Article  Google Scholar 

  4. American Society for Testing and Materials (1978) ASTM D 3379-75 standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials. ASTM, Philadelphia, pp 847–852

    Google Scholar 

  5. Chand N, Hasmi SAR (1993) Effect of plant age on structure and strength of sisal fibre. Met Mater Process 5:51–57

    CAS  Google Scholar 

  6. Belmares H, Barrera A, Castillo E, Verheugen E, Monjaras M, Patfoort GA, Bucquoye MEN (1981) New composite materials from natural hard fibers. Ind Eng Chem Prod Res Dev 20:555–561

    Article  CAS  Google Scholar 

  7. Paul A, Sabu T (1997) Electrical properties of natural-fiberreinforced low density polyethylene composites: a comparison with carbon black and glass-fiber-filled low density polyethylene composites. J Appl Polym Sci 63:247–266

    Article  CAS  Google Scholar 

  8. Joseph PV, Marcelo SR, LHC Mattoso, Kuruvilla J, Sabu T (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62:1357–1372

    Article  CAS  Google Scholar 

  9. Sanjuan MA, Toledo Filho RD (1998) Effectiveness of crack control at early age on the corrosion of steel bars in low modulus sisal and coconut fibre-reinforced mortars. Cement Concrete Res 28:555–565

    Article  CAS  Google Scholar 

  10. Mishra S, Amar KM, Lawrence TD, Manjusri M, George H (2004) A review of pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974

    Article  CAS  Google Scholar 

  11. Baley C (2002) Analysis of the flax fibers tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci 33:939–948

    Article  Google Scholar 

  12. Goswani BC, Rajesh DA, David H (2004) Textile sizing. Marcel Dekker, New York, pp 27–28

    Google Scholar 

  13. Tao W, Calamari TA, Shih FF, Cao C (1997) Characterization of kenaf fiber bundles and their nonwoven mats. TAPPI J 80:162–166

    CAS  Google Scholar 

  14. Yamada J (2002) Radiative properties of fibers with non-circular cross sectional shapes. J Quant Spectrosc Radiat Transfer 73:261–272

    Article  CAS  Google Scholar 

  15. Dunaway DL, Thiel BL, Srinivasan SG, Viney C (1995) Characterizing the cross-sectional geometry of thin, non-cylindrical, twisted fibres (spider silk). J Mater Sci 30:4161–4170

    Article  CAS  Google Scholar 

  16. Perez-Rigueiro J, Elices M, Llorca J, Viney C (2001) Tensile properties of silkworm silk obtained by forced silking. J Appl Polym Sci 82:1926–1935

    Google Scholar 

  17. Selivanova LF, Polatovskaya RA (1977) Area of an irregular fibre cross section. Fiber Chem 9:170–172

    Article  Google Scholar 

  18. Howatson AM, Lund PG, Todd JD (1992) Engineering tables and data. Kluwer, London, p 41

    Google Scholar 

  19. Pickering KL, Abdella A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fiber for use in thermoplastic matrix composite. Compos Part A Appl Sci 34:915–926

    Article  Google Scholar 

  20. Hornsby PR, Hinrichsen E, Trivedi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. Part II. Analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  21. Shibata M, Takachiyo K, Ozawa K, Yosomiya R, Takeishi H (2002) Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci 85:129–138

    Article  CAS  Google Scholar 

  22. Zhang M, Kawai S, Sasaki H (1994) Production and properties of composite fiberboard I. Influence of mixing ratio of jute/wood fiber on the properties of boards. Mokuzai Gakkaishi 40:816–823

    Google Scholar 

  23. Bledzki AK, Gassan J (1994) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  24. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 88

    Google Scholar 

  25. Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie [Bohmeria nivea (L) Gaud] and Spanish broom (Spartinum junceum L.) fibers for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crop Prod 11:145–161

    Article  Google Scholar 

  26. Yamanaka A, Yoshikawa M, Abe S, Tsutsumi M, Oohazama T, Kitagawa T, Fujishiro H, Ema K, Izumi Y, Nishijima S (2005) Effect of vapor-phase-formaldehyde treatments on thermal conductivity and diffusivity of ramie fibers in the range of low temperature. J Polym Sci Part B Polym Phys 43:2754–2766

    Article  CAS  Google Scholar 

  27. Kozloswki R, Rawluk M, Barriga-Bedoya J (2005) Ramie. In: Bast and other plant fibres. Woodhead, Cambridge, UK, p 211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasa Sofyan Munawar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munawar, S.S., Umemura, K. & Kawai, S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53, 108–113 (2007). https://doi.org/10.1007/s10086-006-0836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0836-x

Key words