Haw JF, Schultz TP (1985) Carbon-13 CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39:289–296
Article
CAS
Google Scholar
Brežný R, Mihálov V, Kováčik V (1983) Low temperature thermolysis of lignins. I. Reactions of β-O-4 model compounds. Holzforschung 37:199–204
Article
Google Scholar
Kawamoto H, Horigoshi S, Saka S (2006) Pyrolysis reactions of various lignin model dimers. J Wood Sci. DOI:10.1007/s10086-006-0834-z
Whiting P, Goring DAI (1982) Phenolic hydroxy analysis of lignin by pyrolytic gas chromatography. Paperi ja Puu 10:592–595
Google Scholar
Klein MT, Virk PS (1983) Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether. Ind Eng Chem Fundam 22:35–45
Article
CAS
Google Scholar
Kislitsyn AN, Rodionova ZM, Savinykh VI (1971) Thermal decomposition of monophenylglycol ether. Khim Drev 9:131–136
CAS
Google Scholar
Autrey ST, Alnajjar MS, Nelson DA, Franz JA (1991) Absolute rate constants for β-scission reaction of the 1-phenyl-2-phenoxypropyl radical: a model for radical reactions of lignin. J Org Chem 56:2197–2202
Article
CAS
Google Scholar
Britt PF, Buchanan AC, Thomas KB, Lee S-K (1995) Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways. J Anal Appl Pyrolysis 33:1–19
Article
Google Scholar
Evans RJ, Milne TA, Soltys MN (1986) Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels III. Primary pyrolysis of lignin. J Anal Appl Pyrolysis 9:207–236
Article
CAS
Google Scholar
Sano Y (1975) Hydrolysis of lignin with dioxane and water XV. Hydrolysis of 1-guaiacyl-2-guaiacoxy-1-propene-3-ol and guaiacylglycerol-β-guaiacyl ether. Mokuzai Gakkaishi 21:508–519
CAS
Google Scholar
Sano Y (1989) Reactivity of β-O-4 linkages in lignin during solvolysis pulping. Degradation of β-O-4 lignin model compounds. Mokuzai Gakkaishi 35:813–819
CAS
Google Scholar
Kishimoto T, Sano Y (2002) Delignification mechanism during high-boiling solvent pulping. Part 2. Homolysis of guaiacylglycerol β-guaiacyl ether. Holzforschung 56:623–631
Article
CAS
Google Scholar
Tanahashi M, Karina M, Tamabuchi K, Higuchi M (1989) Degradation mechanism of lignin accompanying steam explosions I. Degradation products of lignin and β-O-4 lignin substructure model dimmers. Mokuzai Gakkaishi 35:135–143
CAS
Google Scholar
Kawamoto H, Nakamura T, Saka S (2004) Mechanism of the pyrolytic cleavage of ether structures in lignin. Proceedings of the 49th Lignin Symposium, Tsukuba, November 18, 19, pp 85-88
Freudenberg K, Müller HG (1953) Synthetische Versuche im Zusammenhang mit dem Lignin. Liebigs Ann Chem 584:40–53
Article
CAS
Google Scholar
Johanson B, Miksche GE (1972) über die Benzyl-arylätherbindung im Lignin II. Versuche an Modellen. Acta Chem Scand 26:289–308
Article
Google Scholar
Dimmel DR, Shepard D (1982) Synthesis of lignin model dimers by novel techniques. J Wood Chem Technol 2:297–315
Article
CAS
Google Scholar
McKague AB, Kang GJ, Reeve DW (1993) Reaction of a lignin model dimer with chlorine and chlorine dioxide. Horzforschung 47:497–500
Article
CAS
Google Scholar
Sundholm F (1968) On the synthesis of guaiacyl ethers of 1-veratryl-2-propanol and 1-guaiacyl-2-propanol. Acta Chem Scand 22:854–858
Article
CAS
Google Scholar
Ponomarev DA (1997) Formation of quinone methides: an alternative pathway to thermal degradation of some β-O-4-ether as compounds modeling lignin. Russ J Appl Chem 70:824–826
Google Scholar
Smith GG, Yates BL (1965) Pyrolysis studies. XV. Thermal retrograde aldol condensation of b-hydroxy ketones. J Chem Soc 2067–2078
Mole T (1960) Thermal retro-aldol reaction. Chem Ind 1164–1165
Smith GG, Taylor R (1961) Kinetic evidence for the mechanism of pyrolysis of β-hydroxyolefines. Chem Ind (London) 949–950
Arnord RT, Elmer OC, Dodson RM (1950) Thermal decarboxylation of unsaturated acids. J Am Chem Soc 72:4359–4361
Article
Google Scholar
Smith GG, Blau SE (1964) Decarboxylation. I. Kinetic study of the vapor phase thermal decarboxylation of 3-butenoic acid. J Phys Chem 68:1231–1234
Article
CAS
Google Scholar