Skip to main content

Official Journal of the Japan Wood Research Society

Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer

Abstract

Effects of side chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic model dimers were studied with various deoxygenated dimers under pyrolysis conditions of N2/400°C/1 min. Although phenolic dimer with hydroxyl groups at the C α and C γ positions was much more reactive than the corresponding nonphenolic type, deoxygenation at the C γ -position substantially reduced the reactivity up to the level of the nonphenolic type. These results are discussed with the cleavage mechanism via quinone methide intermediate formation, which is activated through intramolecular hydrogen bonds between C α and C γ hydroxyl groups.

References

  1. Haw JF, Schultz TP (1985) Carbon-13 CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39:289–296

    Article  CAS  Google Scholar 

  2. Brežný R, Mihálov V, Kováčik V (1983) Low temperature thermolysis of lignins. I. Reactions of β-O-4 model compounds. Holzforschung 37:199–204

    Article  Google Scholar 

  3. Kawamoto H, Horigoshi S, Saka S (2006) Pyrolysis reactions of various lignin model dimers. J Wood Sci. DOI:10.1007/s10086-006-0834-z

  4. Whiting P, Goring DAI (1982) Phenolic hydroxy analysis of lignin by pyrolytic gas chromatography. Paperi ja Puu 10:592–595

    Google Scholar 

  5. Klein MT, Virk PS (1983) Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether. Ind Eng Chem Fundam 22:35–45

    Article  CAS  Google Scholar 

  6. Kislitsyn AN, Rodionova ZM, Savinykh VI (1971) Thermal decomposition of monophenylglycol ether. Khim Drev 9:131–136

    CAS  Google Scholar 

  7. Autrey ST, Alnajjar MS, Nelson DA, Franz JA (1991) Absolute rate constants for β-scission reaction of the 1-phenyl-2-phenoxypropyl radical: a model for radical reactions of lignin. J Org Chem 56:2197–2202

    Article  CAS  Google Scholar 

  8. Britt PF, Buchanan AC, Thomas KB, Lee S-K (1995) Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways. J Anal Appl Pyrolysis 33:1–19

    Article  Google Scholar 

  9. Evans RJ, Milne TA, Soltys MN (1986) Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels III. Primary pyrolysis of lignin. J Anal Appl Pyrolysis 9:207–236

    Article  CAS  Google Scholar 

  10. Sano Y (1975) Hydrolysis of lignin with dioxane and water XV. Hydrolysis of 1-guaiacyl-2-guaiacoxy-1-propene-3-ol and guaiacylglycerol-β-guaiacyl ether. Mokuzai Gakkaishi 21:508–519

    CAS  Google Scholar 

  11. Sano Y (1989) Reactivity of β-O-4 linkages in lignin during solvolysis pulping. Degradation of β-O-4 lignin model compounds. Mokuzai Gakkaishi 35:813–819

    CAS  Google Scholar 

  12. Kishimoto T, Sano Y (2002) Delignification mechanism during high-boiling solvent pulping. Part 2. Homolysis of guaiacylglycerol β-guaiacyl ether. Holzforschung 56:623–631

    Article  CAS  Google Scholar 

  13. Tanahashi M, Karina M, Tamabuchi K, Higuchi M (1989) Degradation mechanism of lignin accompanying steam explosions I. Degradation products of lignin and β-O-4 lignin substructure model dimmers. Mokuzai Gakkaishi 35:135–143

    CAS  Google Scholar 

  14. Kawamoto H, Nakamura T, Saka S (2004) Mechanism of the pyrolytic cleavage of ether structures in lignin. Proceedings of the 49th Lignin Symposium, Tsukuba, November 18, 19, pp 85-88

  15. Freudenberg K, Müller HG (1953) Synthetische Versuche im Zusammenhang mit dem Lignin. Liebigs Ann Chem 584:40–53

    Article  CAS  Google Scholar 

  16. Johanson B, Miksche GE (1972) über die Benzyl-arylätherbindung im Lignin II. Versuche an Modellen. Acta Chem Scand 26:289–308

    Article  Google Scholar 

  17. Dimmel DR, Shepard D (1982) Synthesis of lignin model dimers by novel techniques. J Wood Chem Technol 2:297–315

    Article  CAS  Google Scholar 

  18. McKague AB, Kang GJ, Reeve DW (1993) Reaction of a lignin model dimer with chlorine and chlorine dioxide. Horzforschung 47:497–500

    Article  CAS  Google Scholar 

  19. Sundholm F (1968) On the synthesis of guaiacyl ethers of 1-veratryl-2-propanol and 1-guaiacyl-2-propanol. Acta Chem Scand 22:854–858

    Article  CAS  Google Scholar 

  20. Ponomarev DA (1997) Formation of quinone methides: an alternative pathway to thermal degradation of some β-O-4-ether as compounds modeling lignin. Russ J Appl Chem 70:824–826

    Google Scholar 

  21. Smith GG, Yates BL (1965) Pyrolysis studies. XV. Thermal retrograde aldol condensation of b-hydroxy ketones. J Chem Soc 2067–2078

  22. Mole T (1960) Thermal retro-aldol reaction. Chem Ind 1164–1165

  23. Smith GG, Taylor R (1961) Kinetic evidence for the mechanism of pyrolysis of β-hydroxyolefines. Chem Ind (London) 949–950

  24. Arnord RT, Elmer OC, Dodson RM (1950) Thermal decarboxylation of unsaturated acids. J Am Chem Soc 72:4359–4361

    Article  Google Scholar 

  25. Smith GG, Blau SE (1964) Decarboxylation. I. Kinetic study of the vapor phase thermal decarboxylation of 3-butenoic acid. J Phys Chem 68:1231–1234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kawamoto, H., Horigoshi, S. & Saka, S. Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer. J Wood Sci 53, 268–271 (2007). https://doi.org/10.1007/s10086-006-0839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0839-7

Key words

  • Lignin pyrolysis
  • Model compound
  • β-Ether cleavage
  • Effect of hydroxyl group