Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

The monomer composition controls the Σβ-O-4/ΣO-4 end monomer ratio of the linear lignin fraction

Abstract

Lignins are cell wall phenolic heteropolymers that result from the oxidative coupling of three monolignols bearing p-coumaryl (H), coniferyl (G), and sinapyl (S) units, in a reaction mediated by peroxidases. Here, we report the existence of a relationship between the Σβ-O-4/ΣO-4 end monomer ratio of the linear lignin fraction, released through the specific cleavage of the alkyl ether linkages by thioacidolysis, and the G/S ratio of lignins, when this was estimated in differentially evolved vascular land plants. Most importantly, in the case of angiosperms, Gnetales, and lycopods, the Σβ-O-4/ΣO-4 end monomer ratio was apparently predictable from the proportions at which the G and S units were mixed. In the case of G lignins (present in basal gymnosperms and ferns), the Σβ-O-4/ΣO-4 end monomer ratio decayed exponentially to increase the O-4-linked dihydroconiferyl alcohol (DHCA) content. The results obtained suggest that the Σβ-O-4/ΣO-4 end monomer ratio of the linear lignin fraction depends intimately on the lignin monomer composition, and, therefore, on the chemical nature of the radicals derived from three monolignols (coniferyl, dihydroconiferyl, and sinapyl alcohols), whose gain have been finely tuned during land plant evolution.

References

  1. Ros Barceló A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132

    Article  Google Scholar 

  2. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  3. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  4. Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Ann Rev Plant Physiol Plant Mol Biol 41: 455–496

    Article  CAS  Google Scholar 

  5. Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  6. Hatfield RD, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evtuguin DV, Amado FML (2003) Application of electrospray ionization mass spectrometry to the elucidation of the primary structure of lignin. Macromol Biosci 3:339–343

    Article  CAS  Google Scholar 

  8. Freudenberg K, Hen CL, Harkin JM, Nimz H, Rener H (1965) Observations on lignin. Chem Commun 224–225

  9. Durbeej B, Eriksson LA (2003) Formation of β-O-4 lignin models — a theoretical study. Holzforschung 57:466–478

    CAS  Google Scholar 

  10. Ros Barceló A (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220:747–756

    Article  PubMed  Google Scholar 

  11. Ros Barceló A, Gómez Ros L, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, Pedreño MA (2004) Basic peroxidases: the gateway for lignin evolution. Phytochem Rev 3:61–78

    Article  Google Scholar 

  12. Lai YZ, Sarkanen KV (1975) Structural variation in dehydrogenation polymers of coniferyl alcohol. Cell Chem Technol 9:239–245

    CAS  Google Scholar 

  13. Terashima N, Fukushima K (1988) Heterogeneity in formation of lignin. XI. An autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol 22:259–270

    Article  CAS  Google Scholar 

  14. Chabannes M, Ruel K, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    Article  CAS  PubMed  Google Scholar 

  15. Russell WR, Forrester AR, Chesson A, Burkitt MJ (1996) Oxidative coupling during lignin polymerisation is determined by unpaired electron delocalisation within parent phenylpropanoid radicals. Arch Biochem Biophys 332:357–366

    Article  CAS  PubMed  Google Scholar 

  16. Davin LB, Lewis NG (2005) Lignin primary structure and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  CAS  PubMed  Google Scholar 

  17. Pomar F, Novo M, Bernal MA, Merino F, Ros Barceló A (2004) Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol 163:111–123

    Article  CAS  Google Scholar 

  18. Gross GG (1980) The biochemistry of lignification. Adv Bot Res 8:25–63

    Article  CAS  Google Scholar 

  19. Schneider EL, Carlquist S (2000) SEM studies on vessels of the homophyllous species of Selaginella. Int J Plant Sci 161:967–974

    Article  Google Scholar 

  20. Jin Z, Matsumoto Y, Tange T, Akiyama T, Higuchi M, Ishii T, Iiyama K (2005) Proof of the presence of guaiacyl-syringyl lignin in Selaginella tamariscina. J Wood Sci 51:524–526

    Article  Google Scholar 

  21. Lapierre CB, Pollet C, Rolando (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed 21:397–412

    Article  CAS  Google Scholar 

  22. Kim H, Ralph J, Lu L, Pilate P, Leplé JC, Pollet B, Lapierre (2002) Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem 49:47412–47419

    Article  Google Scholar 

  23. Jacquet G, Pollet B, Lapierre C, Francesch C, Rolando C, Faix O (1997) Thioacidolysis of enzymatic dehydrogenation polymers from p-hydroxyphenyl, guaiacyl and syringyl precursors. Holzforschung 51:349–354

    Article  Google Scholar 

  24. Ralph J, Kim H, Peng J, Lu F (1999) Arylpropane-1,3-diols in lignins from normal and CAD-deficient pines. Org Lett 1:323–326

    Article  CAS  PubMed  Google Scholar 

  25. Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Ros Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez Ros, L.V., Espiñeira, J.M., Pomar, F. et al. The monomer composition controls the Σβ-O-4/ΣO-4 end monomer ratio of the linear lignin fraction. J Wood Sci 53, 314–319 (2007). https://doi.org/10.1007/s10086-006-0867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0867-3

Key words