Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Structural characteristics of lignin in primitive pteridophytes: Selaginella species

Abstract

The lignin chemical structures of eight species of the Selaginella family, which are primitive vascular plants, were characterized by alkaline nitrobenzene oxidation, acidolysis, and ozonation. Selaginella involvens, Selaginella tamariscina, and Selaginella remotifolia were collected from the University Forest in Chiba, the University of Tokyo, Japan, and Selaginella biformis, Selaginella pennata, S. involvens, Selaginella chrysorrhizos, and unidentified Selaginella species (Selaginella sp.) were collected from northern Thailand. Lignin of all Selaginella species examined in this study was rich in syringyl nuclei. It was confirmed that a considerable portion of syringyl nuclei of Selaginella lignin formed syringylglycerol-β-aryl ether intermonomer linkages. The major diastereomer of arylglycerol-β-aryl ether intermonomer linkages of Selaginella lignins was the erythro-form exhibiting angiosperm lignin characteristics. In addition, lignins of S. involvens, S. tamariscina, and S. remotifolia collected from the University Forest in Chiba, the University of Tokyo, Japan, were isolated according to Björkman’s procedure, and structural features of the lignins were spectrometrically analyzed. It was confirmed that lignin of Selaginella species, which are primitive pteridophytes, was typical guaiacyl-syringyl type as well as being similar to angiosperm lignin.

References

  1. Gibson RJH (1894) Contributions towards a knowledge of the anatomy of the genus Selaginella, Sp. Ann Bot 133:133–205

    Article  Google Scholar 

  2. Duerden H (1934) On the occurrence of vessels in Selaginella. Ann Bot 48:459–465

    Article  Google Scholar 

  3. Schneider EL, Carlquist S (2000) SEM studies on vessels of the homophyllous species of Selaginella. Int J Plant Sci 161:967–974

    Article  Google Scholar 

  4. Gibbs RD (1957) The Mäule reaction, lignin, and the relationships between woody plant. In: Thimann KV, Critchfield WB, Zimmermann MH (eds) The physiology of forest trees. Ronald, New York, pp 269–312

    Google Scholar 

  5. Towers GHN, Gibbs RD (1953) Lignin chemistry and the taxonomy of higher plants. Nature 172:25–26

    Article  CAS  PubMed  Google Scholar 

  6. Creighton RHJ, Gibbs RD, Hibbert H (1944) Studies on lignin and related compounds. LXXV. Alkaline nitrobenzene oxidation of plant materials and application to taxonomic classification. J Am Chem Soc 66:32–37

    Article  CAS  Google Scholar 

  7. Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  8. Chen CL (1992) Nitrobenzene and cupric oxide oxidations. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 301–321

    Chapter  Google Scholar 

  9. White E, Towers GHN (1967) Comparative biochemistry of the Lycopods. Phytochemistry 6:663–667

    Article  CAS  Google Scholar 

  10. Lewis DH (1980) Boron, lignification and the origin of vascular plants — a unified hypothesis. New Phytol 84:209–229

    Article  CAS  Google Scholar 

  11. Logan KJ, Thomas BA (1985) Distribution of lignin derivatives in plants. New Phytol 99:571–585

    Article  CAS  Google Scholar 

  12. Adler E, Pepper JM, Eriksoo E (1957) Action of mineral acid on lignin and model substances of guaiacylglycerol-β-aryl ether type. Ind Eng Chem 49:1391–1392

    Article  CAS  Google Scholar 

  13. Lapierre C, Rolando C, Monties B (1983) Characterization of poplar lignins acidolysis products: capillary gas-liquid and liquid-liquid chromatography of monomeric compounds. Holzforschung 37:189–198

    Article  CAS  Google Scholar 

  14. Jin Z, Matsumoto Y, Tange T, Akiyama T, Higuchi M, Ishii T, Iiyama K (2005) Proof of the presence of guaiacyl-syringyl lignin in Selaginella tamariscina. J Wood Sci 51:424–426

    Article  CAS  Google Scholar 

  15. Brunow G, Karlsson O, Lundquist K, Sipilä J (1993) On the distribution of the diastereomers of the structural elements in lignins: the steric course of reactions mimicking lignin biosynthesis. Wood Sci Technol 27:282–286

    Article  Google Scholar 

  16. Akiyama T, Goto H, Nawawi DS, Syafii W, Matsumoto Y, Meshitsuka G (2005) Erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. Part 4: variation in the erythro/threo ratio in softwood and hardwood lignins and its relation to syringyl/guaiacyl ratio. Holzforschung 59:276–281

    Article  CAS  Google Scholar 

  17. Ralph J (1996) An unusual lignin from kenaf. J Nat Prod 59: 341–342

    Article  CAS  Google Scholar 

  18. Matsumoto Y, Minami K, Ishizu A (1993) Structural study on lignin by ozonation. The erythro and threo ratio of the β-O-4 structure indicates how lignin polymerizes. Mokuzai Gakkaishi 39:734–736

    CAS  Google Scholar 

  19. Akiyama T, Sugimoto T, Matsumoto Y, Meshitsuka G (2002) Erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. Part 1. Improvement of ozonation method for the quantitative analysis of lignin side-chain structure. J Wood Sci 48:210–215

    Article  CAS  Google Scholar 

  20. Schöning AG, Johansson G (1965) Absorptiometric determination of acid-soluble lignin in semichemical bisulfite pulp and in some wood and plants. Sven Papperstidn 68:607–613

    Google Scholar 

  21. Koshijima T, Taniguchi T, Tanaka R (1972) Lignin-carbohydrate complex. I. Infl uences of milling of wood upon the Björkman LCC. Holzforschung 26:211–217

    Article  CAS  Google Scholar 

  22. Björkman A (1956) Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Sven Papperstidn 59:477–485

    Google Scholar 

  23. Iiyama K, Lam TBT (1990) Lignin in wheat internodes. Part 1. The reactivities of lignin units during alkaline nitrobenzene oxidation. J Sci Food Agric 51:481–491

    Article  CAS  Google Scholar 

  24. Towers GHN, Maass WSG (1965) Phenolic acids and lignins in the Lycopodiales. Phytochemistry 4:57–66

    Article  CAS  Google Scholar 

  25. Higuchi T (1976) Evolution of lignin. Wood Res Tech Note Kyoto Univ 10:1–14

    Google Scholar 

  26. Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  27. Matsumoto Y, Ishizu A, Nakano J (1986) Studies on chemical structure of lignin by ozonation. Holzforschung 40:81–85

    CAS  Google Scholar 

  28. Goldschmid O (1954) Determination of phenolic hydroxyl content of lignin preparations by ultraviolet spectrophotometry. Anal Chem 26:1421–1423

    Article  CAS  Google Scholar 

  29. Kawamura I, Higuchi T (1964) Studies on the properties of lignins of plants in various taxonomical positions. II. On the IR absorption spectra of lignins. Mokuzai Gakkaishi 10:200–206

    CAS  Google Scholar 

  30. Hergert HL (1971) Infrared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins — occurrence, formation, structure and reactions. Wiley, New York, pp 267–297

    Google Scholar 

  31. Lundquist K (1979) NMR studies of lignins. 3. 1H NMR spectroscopic data for lignin model compounds. Acta Chem Scand B33:418–420

    Article  CAS  Google Scholar 

  32. Lundquist K (1980) NMR studies of lignins. 4. Investigation of Spruce lignin by 1H NMR spectroscopy. Acta Chem Scand B34:21–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Iiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z., Matsumoto, Y., Tange, T. et al. Structural characteristics of lignin in primitive pteridophytes: Selaginella species. J Wood Sci 53, 412–418 (2007). https://doi.org/10.1007/s10086-006-0872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-006-0872-6

Key words