Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Characterization of sp2- and sp3-bonded carbon in wood charcoal

Abstract

Japanese cedar (Cryptomeria japonica) preheated at 700°C was subsequently heated to 1800°C and characterized by electron microscopy, X-ray diffraction, and micro-Raman spectroscopy. The degree of disorder of carbon crystallites and the amount of amorphous phase decreased considerably with an increase in heat treatment temperature to 1400°C, while carbon crystallites clearly developed above this temperature, showing that the microstructure of carbonized wood undergoes drastic changes around 1400°C. Besides showing the bands for sp2-bonded carbon, the Raman spectra showed a shoulder near 1100 cm−1 assigned to sp3-bonded carbon. With an increase of heat treatment temperature, the peak position of the Raman sp3 band shifted to a lower frequency from 1190 to 1120 cm−1, which is due to the transformation of sp3-bonded carbon from an amorphous phase to a nanocrystalline phase. These data showed that the microstructure of carbonized wood from 700° to 1800°C consisted of the combination of sp2- and sp3-bonded carbon, which is probably due to the disordered microstructure of carbonized wood. It is suggested that the sp3-bonded carbon is transformed from an amorphous structure to a nanocrystalline structure with the growth of polyaromatic stacks at temperatures above 1400°C.

References

  1. Kaneko K, Ishii C, Ruike M, Kuwabara H (1992) Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30:1075–1088

    Article  CAS  Google Scholar 

  2. Schroder A, Kluppel M, Schuster R, Heidberg J (2002) Surface energy distribution of carbon black measured by static gas adsorption. Carbon 40:207–210

    Article  CAS  Google Scholar 

  3. Ishimaru K, Vystavel T, Bronsveld P, Hata T, Imamura Y, Hosson JD (2001) Diamond and pore structure observed in wood charcoal. J Wood Sci 47:414–417

    Article  Google Scholar 

  4. Hata T, Ishimaru K, Fujisawa M, Bronsveld P, Vystavel T, Hosson JD, Kikuchi H, Nishizawa T, Imamura Y (2005) Catalytic graphitization of wood-based carbons with alumina by pulse current heating. Fullerene Nanotube Carbon Nanostr 13:435–445

    Article  CAS  Google Scholar 

  5. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood I: processing and microstructure. J Eur Ceram Soc 18:1961–1973

    Article  CAS  Google Scholar 

  6. Fujisawa M, Hata T, Bronsveld P, Castro V, Tanaka F, Kikuchi H, Furuno T, Imamura Y (2004) SiC/C composites from wood charcoal by pulse current sintering with SiO2 — electrical and thermal properties. J Eur Ceram Soc 24:3575–3580

    Article  CAS  Google Scholar 

  7. Castro V, Fujisawa M, Hata T, Bronsveld P, Vystavel T, Hosson JD, Kikuchi H, Imamura Y (2004) Silicon carbide nanorods and ceramics from wood. Key Eng Mater 264-268:2267–2270

    Article  CAS  Google Scholar 

  8. Nishimiya K, Hata T, Imamura Y, Ishihara S (1998) Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J Wood Sci 44:56–61

    Article  CAS  Google Scholar 

  9. Byrne CE, Nagle DC (1997) Carbonized wood monoliths — characterization. Carbon 35:267–273

    Article  CAS  Google Scholar 

  10. Kercher AK, Nagle DC (2003) Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon 41:15–27

    Article  CAS  Google Scholar 

  11. Paris O, Zollfrank C, Zickler G (2005) Decomposition and carbonization of wood biopolymers — a microstructural study of soft wood pyrolysis. Carbon 43:53–66

    Article  CAS  Google Scholar 

  12. Ishimaru K, Hata T, Bronsveld P, Imamura Y (2007) Microstructural study of carbonized wood after cell wall sectioning. J Mater Sci 42:2662–2668

    Article  CAS  Google Scholar 

  13. Huttepain H, Oberlin A (1990) Microtexture of nongraphitizing carbons and TEM studies of some activated samples. Carbon 28:103–111

    Article  CAS  Google Scholar 

  14. Franklin RE (1951) Crystallite growth in graphitizing and nongraphitizing carbons. Proc R Soc A 209:196–218

    Article  CAS  Google Scholar 

  15. Kobayashi K, Sugawara S, Toyoda S, Honda H (1968) An X-ray diffraction study of phenol-formaldehyde resin carbons. Carbon 6:359–363

    Article  CAS  Google Scholar 

  16. Katagiri G, Ishida H, Ishitani A (1988) Raman spectra of graphite edge planes. Carbon 26:565–571

    Article  CAS  Google Scholar 

  17. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565

    Article  CAS  Google Scholar 

  18. Pantea D, Darmstadt H, Kaliaguine S, Summchen L, Roy C (2001) Electrical conductivity of thermal carbon blacks: influence of surface chemistry. Carbon 39:1147–1158

    Article  CAS  Google Scholar 

  19. Darmstadt H, Roy C, Kaliaguine S, Choi SJ, Ryoo R (2002) Surface chemistry of ordered mesoporous carbons. Carbon 40:2673–2683

    Article  CAS  Google Scholar 

  20. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32:1523–1532

    Article  CAS  Google Scholar 

  21. Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909

    Article  CAS  Google Scholar 

  22. Schwan J, Ulrich S, Batori V, Ehrhardt H (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447

    Article  CAS  Google Scholar 

  23. Darmstadt H, Summchen L, Ting JM, Roland U, Kaliaguine S, Roy C (1997) Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers. Carbon 35:1581–1585

    Article  CAS  Google Scholar 

  24. Prawer S, Nugent KW, Jamieson DN, Orwa JO, Bursill LA, Peng JL (2000) The Raman spectrum of nanocrystalline diamond. Chem Phys Lett 332:93–97

    Article  CAS  Google Scholar 

  25. Yamauchi S, Kurimoto Y (2003) Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters. J Wood Sci 49:235–240

    Article  CAS  Google Scholar 

  26. Kromka A, Breza J, Kadlecikova M, Janik J, Balon F (2005) Identification of carbon phases and analysis of diamond/substrate interfaces by Raman spectroscopy. Carbon 43:425–429

    Article  CAS  Google Scholar 

  27. Oberlin A, Villey M, Combaz A (1980) Influence of elemental composition on carbonization-pyrolysis of kerosene shale and kuckersite. Carbon 18:347–353

    Article  CAS  Google Scholar 

  28. Ishimaru K, Hata T, Bronsveld P, Imamura Y (2007) Spectroscopic analysis of carbonization behavior of wood, cellulose, and lignin. J Mater Sci 42:122–129

    Article  CAS  Google Scholar 

  29. Fitzer E, Schafer W (1970) The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon 8:353–364

    Article  CAS  Google Scholar 

  30. Yamaoka S, Shaji Kumar MD, Kanda H, Akaishi M (2002) Thermal decomposition of glucose and diamond formation under diamond-stable high pressure-high temperature conditions. Diamond Relat Mater 11:118–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Ishimaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimaru, K., Hata, T., Bronsveld, P. et al. Characterization of sp2- and sp3-bonded carbon in wood charcoal. J Wood Sci 53, 442–448 (2007). https://doi.org/10.1007/s10086-007-0879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-007-0879-7

Key words