Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis

Abstract

Wood samples of apitong (Dipterocarpus grandiflorua) and ilang-ilang (Ilang-Ilang C. dadloyi) and feces of termites [Cryptotermes brevis (Walker)] fed on these woods were collected from University of the Philippines, Los Baňos. Lignin of each sample was isolated by Björkman’s procedure. There was no significant difference in 1H nuclear magnetic resonance (NMR) spectra or in the methoxyl content between Björkman lignins from original woods and termite feces. Differences were detected in the contents of aliphatic and unconjugated phenolic hydroxyl groups, suggesting minor structural changes of lignin during digestion by termites. In addition, the ratio of syringyl to guaiacyl nuclei of Björkman lignin from termite feces determined by 1H NMR spectra was higher than those from the original woods. The molar ratio of syringyl to guaiacyl nuclei of termite feces was higher than those from the original woods as determined by alkaline nitrobenzene oxidation. These results suggest that the structural changes of lignin in the termite gut are due to the insignificant formation of C-C linkages in guaiacyl nuclei. It was concluded that there were minor changes in the structural features of lignin under mostly anaerobic conditions, in contrast to the significant changes that occur through biological modification under aerobic conditions.

References

  1. Higuchi T (1985) Degradative pathways of lignin model compounds. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Tokyo, Japan, pp 557–578

    Chapter  Google Scholar 

  2. Kirk KT, Shimada M (1985) Lignin biodegradation. The microorganisms involved, and the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Tokyo, Japan, pp 579–605

    Chapter  Google Scholar 

  3. Brune A (1998) Termite guts: the world’s smallest bioreactors. Trend Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  4. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tholen A, Schink B, Brune A (1997) The gut microfl ora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygendependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    Article  CAS  Google Scholar 

  6. Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  8. Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H (1997) Site of secretion and properties of endogenous endo-β-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem Mol Biol 27:305–313

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe H, Nakashima K, Saito H, Slaytor M (2002) New endo-β-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites. Cell Mol Life Sci 59:1983–1992

    Article  CAS  PubMed  Google Scholar 

  12. Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zool Sci 14:83–93

    Article  CAS  PubMed  Google Scholar 

  13. Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta Gene Struct Expr 1447:146–159

    Article  CAS  Google Scholar 

  14. Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  CAS  PubMed  Google Scholar 

  15. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  CAS  PubMed  Google Scholar 

  16. Hyodo F, Inoue T, Azuma JI, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  17. Khademi S, Guarino LA, Watanabe H, Tokuda G, Meyer EF (2002) Structure of an endoglucanase from termite, Nasutitermes takasagoensis. Acta Cryst D58:653–659

    CAS  Google Scholar 

  18. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  CAS  PubMed  Google Scholar 

  19. Scharf ME, Wu-Scharf D, Zhou X, Pittendrigh BR, Bennett GW (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  CAS  PubMed  Google Scholar 

  20. Zhu BC, Henderson G, Laine RA (2005) Screening method for inhibitors against Formosan subterranean termite β-glucosidases in vivo. J Econ Entomol 98:41–46

    Article  CAS  PubMed  Google Scholar 

  21. Kuhnigk T, Borst EM, Ritter A, Kampfer P, Graf A, Hertel H, Konig H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst Appl Microbiol 17:76–85

    Article  CAS  Google Scholar 

  22. Brune A, Miambi E, Breznak JA (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl Environ Microbiol 61:2688–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iiyama K, Stone BA, Macauley BJ (1994) Compositional changes in compost during composting and cropping of Agaricus bisporus. Appl Environ Microbiol 60:1538–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ono K, Meguro A, Iiyama K (2002) Carbon circulation and functions for the development of urban green spaces in Metro Manila. In: Ohmachi T, Roman ER (eds) Metro Manila: in search of a sustainable future. University of the Philippines Press, Manila, Philippines, pp 199–210

    Google Scholar 

  25. Jin Z, Akiyama T, Chung BY, Matsumoto Y, Iiyama K, Watanabe S (2003) Changes in lignin content of leaf litters during mulching. Phytochemistry 64:1023–1031

    Article  CAS  PubMed  Google Scholar 

  26. Jin Z, Katsumata KS, Iiyama K (2003) Chemical characteristics of peat organic materials under tropical swamp environment. Proceedings of the 48th Lignin Symposium, pp 76–79

  27. Suzuki H, Iiyama K, Yoshida O, Yamazaki S, Yamamoto N, Toda S (1990) Structural characterization of the immunoactive and antiviral water-solubilized lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Agric Biol Chem 54:479–487

    CAS  PubMed  Google Scholar 

  28. Iiyama K, Kasuya N, Lam TBT, Nakano J, Sakaguchi H (1988) Chemical characterisation of ancient buried wood. Holzforschung 42:5–10

    Article  CAS  Google Scholar 

  29. Iiyama K, Lam TBT (2001) Structural characteristics of cell walls of forage grasses-their nutritional evaluation for ruminants-a review. Asian Austr J Anim Sci 14:862–879

    Article  CAS  Google Scholar 

  30. Lam TBT, Iiyama K, Stone BA, Lee JA, Simpson RJ, Pearce GR (1993) The relationship between in vitro enzymatic digestibility of cell walls of wheat internodes and compositional changes during maturation. Acta Bot Neerl 42:175–185

    Article  Google Scholar 

  31. Lam TBT, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607

    Article  CAS  PubMed  Google Scholar 

  32. Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–513

    Article  CAS  Google Scholar 

  33. Cookson LJ (1987) Carbon-14-lignin degradation by three Australian termite species. Wood Sci Technol 21:11–25

    CAS  Google Scholar 

  34. Cookson LJ (1987) Infl uence of laboratory maintenance, relative humidity and coprophagy on 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 33:683–687

    Article  CAS  Google Scholar 

  35. Cookson LJ (1988) The site and mechanism of 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 34:409–414

    Article  CAS  Google Scholar 

  36. Cookson LJ (1992) Studies of lignin degradation in mound material of the termite Nasutitermes exitiosus. Austr J Soil Res 30:189–193

    Article  CAS  Google Scholar 

  37. Kato K, Kozaki S, Sakuranaga M (1998) Degradation of lignin compounds by bacteria from termite guts. Biotechnol Lett 20:459–462

    Article  CAS  Google Scholar 

  38. Hyodo F, Azuma J, Abe T (1999) Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus, on lignin by solid-state CP/MAS 13C NMR. Holzforschung 53:244–246

    Article  CAS  Google Scholar 

  39. Holdaway FG (1933) Composition of different regions of mounds of Eutermes exitiosus Hill. J Council Sci Ind Res 6:160–165

    CAS  Google Scholar 

  40. Cohen WE (1933) Analysis of termite (Eutermes exitiosus) tmound material. J Council Sci Ind Res 6:166–169

    CAS  Google Scholar 

  41. Wolcott GN (1946) Factors in the natural resistance of woods to termite attack. Carib Forest 7:121–134

    CAS  Google Scholar 

  42. Leopold B (1952) Lignin. XIV. The composition of Douglas-fir wood digested by the West Indian dry-wood termite (Cryptotermes brevis). Svensk Papperstidn 55:784–786

    CAS  Google Scholar 

  43. Kovoor J (1964) Chemical modification of poplarwood sawdust by the action of the termite species Microcerotermes edentatus. Compt Rend 258:2887–2889

    CAS  Google Scholar 

  44. Esenther GR, Kirk TK (1974) Catabolism of Aspen Sapwood in Reticulitermes flavipes (Isoptera, Rhinotermitidae). Ann Entomol Soc Am 67:989–991

    Article  CAS  Google Scholar 

  45. Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Barron PF, Frost RL, Doimo L, Kennedy MJ (1985) Carbon-13 CP/MAS NMR examination of some Australian woods and their chemical and biochemical degradation residues. J Macromol Sci Chem A22:303–322

    Article  CAS  Google Scholar 

  47. Garnier-Sillam E, Grech I, Czaninski Y, Tollier MT, Monties B (1992) Cytochemical ultrastructural study of lignin degradation of parietal residues of spruce and poplar wood by Reticulitermes lucifugus var. santonensis (Rhinotermitidae, Isoptera). Can J Bot 70:933–941

    Article  CAS  Google Scholar 

  48. Seifert K (1962) Chemical changes in the cell-wall components of wood under the influence of plant and animal pests. IV. Digestion of pinewood and red beechwood by the termite, Kalotermes flavicollis. Holzforschung 16:161–168

    Article  CAS  Google Scholar 

  49. Lee KE, Butler JHA (1977) Termites, soil organic matter decomposition and nutrient cycling. Ecol Bull 25:544–548

    CAS  Google Scholar 

  50. Hirai H, Shinzato N, Nakagawa A, Watanabe Y, Kurane R (2000) Degradation of lignin model compounds by various termites. Mokuzai Gakkaishi 46:63–67

    CAS  Google Scholar 

  51. Björkman A (1956) Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidn 59:477–485

    Google Scholar 

  52. Koshijima T, Taniguchi T, Tanaka R (1972) Lignin-carbohydrate complex. I. Influences of milling of wood upon the Björkman LCC. Holzforschung 26:211–217

    Article  CAS  Google Scholar 

  53. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  54. Scott RW (1979) Colorimetric determination of hexuronic acids in plant materials. Anal Chem 51:936–941

    Article  CAS  Google Scholar 

  55. Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  56. Goto H, Koda K, Tong G, Matsumoto Y, Meshitsuka G (2005) Formation of methyl iodide from methoxyl-free compounds by hydriodic acid treatment. J Wood Sci 51:312–314

    Article  CAS  Google Scholar 

  57. Goldschmid O (1954) Ultraviolet absorption spectra as a measure of phenolic hydroxyl group content in polyphenolic tannin like materials. Anal Chem 26:1423–1427

    Article  Google Scholar 

  58. Adler E, Marton J (1959) Carbonyl groups in lignin. I. Acta Chem Scand 13:75–96

    Article  CAS  Google Scholar 

  59. Iiyama K, Lam TBT, Kasuya N, Stone BA (1994) Rapid and simple determination of O-acetyl groups bound to plant cell walls by acid hydrolysis and 1H-NMR measurement. Phytochemistry 35:959–961

    Article  CAS  Google Scholar 

  60. Lundquist K (1979) NMR studies of lignins. 3. 1H NMR spectroscopic data for lignin model compounds. Acta Chem Scand 33:418–420

    Article  Google Scholar 

  61. Hogan ME, Slaytor M, O’Brien RW (1985) Transport of volatile fatty acids across the hindgut of the coackroach, Panethia cribata and the termite, Mastotermes darwiniensis. J Insect Physiol 250:G469–G474

    Google Scholar 

  62. Jin Z, Katsumata KS, Lam TBT, Iiyama K (2006) Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 83:103–110

    Article  CAS  PubMed  Google Scholar 

  63. Nimz H, Luedemann HD (1974) Carbon-13-NMR spectra of lignins. 5. Oligomeric model substances of lignin. Makromol Chem 175:2577–2583

    Article  CAS  Google Scholar 

  64. Luedemann HD, Nimz H (1974) Carbon-13 NMR spectra of lignins. 1. Chemical shifts of monomeric and dimeric model substances. Makromol Chem 175:2393–2407

    Article  CAS  Google Scholar 

  65. Luedemann HD, Nimz H (1974) Carbon-13 NMR spectra of lignins. 2. Beech and spruce Björkman lignin. Makromol Chem 175:2409–2422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Iiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsumata, K.S., Jin, Z., Hori, K. et al. Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis . J Wood Sci 53, 419–426 (2007). https://doi.org/10.1007/s10086-007-0882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-007-0882-z

Key words