Skip to main content

Official Journal of the Japan Wood Research Society

Hybrid aspen with a transgene for fungal manganese peroxidase is a potential contributor to phytoremediation of the environment contaminated with bisphenol A


To assess the possible utility of a fungal gene for manganese-dependent peroxidase (MnP) produced by a transgenic plant in phytoremediation, we transformed hybrid aspen with a chimeric gene for MnP. Our gene construct allowed expression of the gene for MnP in plants and relatively high MnP activity was detected in the hydroponic medium in which roots of plants that expressed the transgene had been cultured. Some of our transgenic plants were able to remove bisphenol A from the medium more efficiently than wild-type plants. Our results demonstrate that, without any modification of the coding sequence, a chimeric gene for fungal MnP can be expressed in a woody plant, with secretion of active MnP from roots into the rhizosphere. Our strategy suggests new options using woody plants for phytoremediation.


  1. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  PubMed  Google Scholar 

  2. Kang JH, Katayama Y, Kondo F (2006) Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology 217:81–90

    Article  CAS  PubMed  Google Scholar 

  3. Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotech Biochem 64:1958–1962

    Article  CAS  Google Scholar 

  4. Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    Article  CAS  PubMed  Google Scholar 

  5. Nakajima N, Ohshima Y, Serizawa S, Kouda T, Edmonds JS, Shiraishi F, Aono M, Kubo A, Tamaoki M, Saji H, Morita M (2002) Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol 43:1036–1042

    Article  CAS  PubMed  Google Scholar 

  6. Hamada H, Tomi R, Asada Y, Furuya T (2002) Phytoremediation of bisphenol A by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation. Tetrahedron Lett 43:4087–4089

    Article  CAS  Google Scholar 

  7. Morohoshi K, Shiraishi F, Oshima Y, Koda T, Nakajima N, Edmonds JS, Morita M (2003) Synthesis and estrogenic activity of bisphenol A mono-and Di-beta-d-glucopyranosides, plant metabolites of bisphenol A. Environ Toxicol Chem 22:2275–2279

    Article  CAS  PubMed  Google Scholar 

  8. Sakuyama H, Endo Y, Fujimoto K, Hatano Y (2003) Oxidative degradation of alkylphenols by horseradish peroxidase. J Biosci Bioeng 96:227–231

    Article  CAS  PubMed  Google Scholar 

  9. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  10. Newman LA, Wang XP, Muiznieks IA, Ekuan G, Ruszaj M, Cortellucci R, Domroes D, Karscig G, Newman T, Crampton RS, Hashmonay RA, Yost MG, Heilman PE, Duffy J, Gordon MP, Strand SE (1999) Remediation of trichloroethylene in an artificial aquifer with trees: a controlled field study. Environ Sci Technol 33: 2257–2265

    Article  CAS  Google Scholar 

  11. Aitchison EW, Kelley SL, Alvarez PJJ, Schnoor JL (2000) Phytoremediation of 1,4-dioxane by hybrid poplar trees. Water Environ Res 72:313–321

    Article  CAS  Google Scholar 

  12. Iimura Y, Ikeda S, Sonoki T, Hayakawa T, Kajita S, Kimbara K, Tatsumi K, Katayama Y (2002) Expression of a gene for Mnperoxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotech 59:246–251

    Article  CAS  Google Scholar 

  13. Kajita S, Honaga F, Uesugi M, Iimura Y, Masai E, Kawai S, Fukuda M, Morohoshi N, Katayama Y (2004) Generation of transgenic hybrid aspen that express a bacterial gene for feruloyl-CoA hydratase/lyase (FerB), which is involved in lignin degradation in Sphingomonas paucimobilis SYK-6. J Wood Sci 50:275–280

    Article  CAS  Google Scholar 

  14. Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y, Iimura Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotech 67:138–142

    Article  CAS  Google Scholar 

  15. Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L) expressing alpha-amylase and manganesedependent lignin peroxidase. Euphytica 85:381–393

    Article  CAS  Google Scholar 

  16. Clough RC, Pappu K, Thompson K, Beifuss K, Lane J, Delaney DE, Harkey R, Drees C, Howard JA, Hood EE (2006) Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotech J 4:53–62

    Article  CAS  Google Scholar 

  17. Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotech J 1:129–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shinya Kajita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iimura, Y., Yoshizumi, M., Sonoki, T. et al. Hybrid aspen with a transgene for fungal manganese peroxidase is a potential contributor to phytoremediation of the environment contaminated with bisphenol A. J Wood Sci 53, 541–544 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words