Skip to main content

Official Journal of the Japan Wood Research Society

  • Original article
  • Published:

Steroid 5α-reductase inhibitory activity of condensed tannins from woody plants

Abstract

In humans, steroid 5α-reductase is involved in the development of benign prostatic hyperplasia (BPH). We tested the steroid 5α-reductase inhibitory activity of the 70% acetone extract of woody plants. The tannin polymer prepared from the 70% acetone extract showed the highest steroid 5α-reductase inhibitory activity. Furthermore, the steroid 5α-reductase inhibitory activity of tannins was not affected by the addition of superoxide dismutase or catalase. It was concluded that the steroid 5α-reductase inhibitory activity of condensed tannin was caused by binding to the steroid 5α-reductase, rather than from the peroxide/superoxide produced by tannins. The tannins, prepared from tree barks, with potential for steroid 5α-reductase inhibitory activity might be advantageous in therapy for steroid 5α-reductase diseases such as BPH or prostate cancer.

References

  1. McGuire JS, Hollis VW, Tomkins GM (1960) Some characteristics of the microsomal steroid reductases (5α) of rat liver. J Biol Chem 235:3112–3117

    CAS  Google Scholar 

  2. Russell DW, Wilson JD (1994) Steroid 5α-reductase: two genes/two enzymes. Ann Rev Biochem 63:25–61

    Article  CAS  PubMed  Google Scholar 

  3. Anderson KM, Liao S (1968) Selective retention of dihydrotestosterone by prostatic nuclei. Nature (London) 219:277–279

    Article  CAS  Google Scholar 

  4. Takayasu S, Adachi K (1972) The conversion of testosterone to 17-hydroxyl-5-androstan-3-one (dihydrotestosterone) by human hair follicles. J Clin Endocrinol Metab 34:1098–1101

    Article  CAS  PubMed  Google Scholar 

  5. Liao S, Liang T, Fang S, Castaneda E, Shao T-C (1973) Steroid structure and androgenic activity. Specificities involved in the receptor binding and nuclear retention of various androgens. J Biol Chem 248:6154–6162

    CAS  PubMed  Google Scholar 

  6. Imperato-McGinley J, Shackleton C, Orlic S, Stoner E (1990) C19 and C21 5-beta/5-alpha metabolite rations in subjects treated with the 5α-reductase inhibitor finasteride: comparison of male pseudohermaphrodites with inherited 5α-reductase deficiency. J Clin Endocrinol Metab 70:777–782

    Article  CAS  PubMed  Google Scholar 

  7. Randall VA, Thorton MJ, Messenger AG (1992) Mechanism of androgen action in cultured dermal papilla cells derived from human hair follicles with varying responses to androgen in vivo. J Inves Dermatol 98: 86S–91S

    Article  CAS  Google Scholar 

  8. Peterson RE, Imperato-McGinley J, Gautier T, Strula E (1977) Male pseudohermaphroditism due to steroid 5α-reductase deficiency. Am J Med 62:170–191

    Article  CAS  PubMed  Google Scholar 

  9. Imperato-McGinley J, Guerrenol L, Gautier T, Peterson RE (1974) Steriod 5α-reductase deficiency in man; an inherited form of male pseudohermaphroditism. Science 86:1213–1215

    Article  Google Scholar 

  10. Gormley GJ (1996) 5α-Reducatse inhibitors in prostate cancer. Endocr Relat Canc 3:57–63

    Article  CAS  Google Scholar 

  11. Audia JE, Lawhorn DE, Deeter JB (1993) Synthesis of the individual enantiomers of the benzoquinolinone human type 1 steriod 5α-reductase inhibitors LY191740 and LY266111. Tetrahedron Lett 34:7001–7004

    Article  CAS  Google Scholar 

  12. Hirsch KS, Jones CD, Audia JE, Andersson S, McQuaid LA, Stamm NB, Neubaucr BL, Pennington T, Toomey TE (1993) LY191704: a selective, nonsteroidal inhibitor of human steroid 5α-reductase type 1. Proc Natl Acad Sci USA 90:5277–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasmusson GH, Reynolds GF, Utne T, Jobson RB, Primka RL, Berman C, Brooks JR (1984) Azasteriods as inhibitors of rat prostatic 5α-reductase. J Med Chem 27:1690–1701

    Article  CAS  PubMed  Google Scholar 

  14. Rasmusson GH, Reynolds GF, Steinberg NG, Walton E, Patel GF, Liang T, Cascieri MA, Cheung AH, Brooks JR, Berman C (1986) Azasteroids: structure-activity relationships for inhibition of 5α-reductase and of androgen receptor binding. J Med Chem 29:2298–2315

    Article  CAS  PubMed  Google Scholar 

  15. Stoner E (1992) The Finasteride study group. The clinical effects of a 5α-reductase inhibitor, finasteride, on benign prostatic hyperplasia. J Urol 147:1298–1302

    Article  CAS  PubMed  Google Scholar 

  16. Uygur MC, Gur E, Ariki AI, Altug U, Erol D (1998) Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. Andrologia 30:5–10

    Article  CAS  PubMed  Google Scholar 

  17. Forrester PD (1999) Logyard residue reclamation in Central-Interior British Columbia. FERIC Technical Note TN-287. Forest Engineering Research Institute of Canada, Vancouver, BC

  18. Ikami Y, Murata K (2003) Generation and utilization of wood residue amd sawmills. Bull For For Prod Res Inst 22:111–114

    Google Scholar 

  19. Mueller-Harvey I (2001) Analysis of hydrolysable tannins. Anim Feed Sci Technol 91:3–20

    Article  CAS  Google Scholar 

  20. Murray M, Pizzorno J (1999) Procyanidolic oligomers. In: Murray M, Pizzorno J (eds) The textbook of natural medicine, 2nd edn. Churchill Livingston, London, pp 899–902

    Google Scholar 

  21. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457

    Article  CAS  PubMed  Google Scholar 

  22. Chen ZY, Chan PT, Ho KY, Fung KP, Wang J (1996) Antioxidant activity of natural fl avonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 79:157–163

    Article  CAS  PubMed  Google Scholar 

  23. Nuttalll SL, Kendall MJ, Bombardelli E, Morazzoni P (1998) An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect. J Clin Pharm Ther 23:385–389

    Article  Google Scholar 

  24. Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ (1997) Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95:179–189

    CAS  PubMed  Google Scholar 

  25. Bagchi D, Garg A, Krohn R, Balmoori J, Stohs SJ (1998) Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol 30:771–776

    Article  CAS  PubMed  Google Scholar 

  26. Robert L, Godeau G, Gavignet-Jeannin C, Groult N, Six C, Robert A (1990) The effect of procyanidolic oligomers on vascular permeability. A study using quantitative morphology. Pathol Biol (Paris) 38:608–616

    CAS  Google Scholar 

  27. Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  28. Shimizu K, Fukuda M, Kondo R, Sakai K (2000) The 5α-reductase inhibitory components from heartwood of Artocarpus incisus: structure-activity investigations. Planta Med 66:16–19

    Article  CAS  PubMed  Google Scholar 

  29. Lee HL, Evans PJ, Halliwel B (1999) Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochem Biophys Res Commun 262:605–609

    Article  Google Scholar 

  30. Ohara S, Suzuki K, Ohira T (1994) Condensed tannins from Acacia mearnsii and their biological activities. Mokuzai Gakkaishi 40: 1363–1374

    CAS  Google Scholar 

  31. Ohara S, Yanagi K (1995) Polyphenols in Salix species I. Polyphenols from the bark of Salix rorida Lackschewitz. Mokuzai Gakkaishi 41:406–413

    CAS  Google Scholar 

  32. Samejima M, Yoshimoto T (1981) General aspects of phenolic extractives from coniferous barks. Mokuzai Gakkaishi 27:491–497

    CAS  Google Scholar 

  33. Foo LY (1984) Condensed tannins: co-occurrence of procyanidins, prodelphinidins and profisetinidins in the heartwood of Acacia baileyana. Phytochemistry 23:2915–2918

    Article  CAS  Google Scholar 

  34. Matsuo T, Ito S (1978) The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agric Biol Chem 42:1637–1643

    CAS  Google Scholar 

  35. Lampire O, Mila I, Raminosoa M, Michon V, Herve du Penhoat C, Faucheur N, Laprevote O, Scalbert A (1998) Polyphenols isolated from the bark of Castanea sativa Mill. Chemical structures and auto-association. Phytochemistry 49:623–631

    Article  CAS  Google Scholar 

  36. Liu J, Fujita R, Sato M, Shimizu K, Konishi F, Noda K, Kumamoto S, Ueda C, Tajiri H, Kaneko S, Suimi Y, Kondo R (2005) The effect of strain, growth stage, and cultivation condition of Ganoderma lucidum on 5α-reductase inhibition. J Wood Sci 51:189–192

    Article  CAS  Google Scholar 

  37. Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59:205–215

    Article  CAS  PubMed  Google Scholar 

  38. Goldstein JL, Swain T (1965) The inhibition of enzymes by tannins. Phytochemistry 4:185–192

    Article  CAS  Google Scholar 

  39. Haslam E (1974) Polyphenol-protein interactions. Biochem J 139:285–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bate-Smith EC (1973) Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12:907–912

    Article  CAS  Google Scholar 

  41. Liao S, Kao YH, Hiipakka R (2001) Green tea: biological and biochemical basis for health benefits. In: Litwack G (ed) Vitamins and hormones, vol 62. Academic, New York, pp 1–94

    Google Scholar 

  42. Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S (1998) Active oxygen generation by flavonoids. Biol Pharm Bull 21:93–96

    Article  CAS  PubMed  Google Scholar 

  43. Long LH, Clement MV, Halliwell B (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 273:50–53

    Article  CAS  PubMed  Google Scholar 

  44. Sekiya J, Kajiwara T, Monma T, Hatanaka A (1984) Interaction of tea catechins with proteins: formation of protein precipitate. Agric Biol Chem 48:1963–1967

    CAS  Google Scholar 

  45. Liang T, Heiss CE (1981) Inhibition of 5 α-reductase, receptor binding, and nuclear uptake of androgens in the prostate by a 4-methyl-4-aza-steroid. J Biol Chem 256:7998–8005

    CAS  PubMed  Google Scholar 

  46. Liang T, Heiss CE, Cheung AH, Reynolds GF, Rasmusson GH (1984) 4-Azasteroidal 5α-reductase inhibitors without affinity for the androgen receptor. J Biol Chem 259:734–739

    CAS  PubMed  Google Scholar 

  47. Liang T, Cheung AH, Reynolds GF, Rasmusson GH (1985) Photoaffinity labeling of steroid 5α-reductase of rat liver and prostate microsomes. J Biol Chem 260:4890–4895

    CAS  PubMed  Google Scholar 

  48. Brandt M, Greway AT, Holt DA, Metcalf BW, Levy MA (1990) Studies on the mechanism of steroid 5α-reductase inhibition by 3-carboxy A ring aryl steroids. J Steroid Biochem Mol Biol 37:575–579

    Article  CAS  PubMed  Google Scholar 

  49. Ross RK, Bernstein L, Lobo RA, Shimizu H, Stanczyk FZ, Pike MC, Henderson BE (1992) 5α-Reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 339:887–889

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichiro Kondo.

Additional information

Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Ando, R., Shimizu, K. et al. Steroid 5α-reductase inhibitory activity of condensed tannins from woody plants. J Wood Sci 54, 68–75 (2008). https://doi.org/10.1007/s10086-007-0905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-007-0905-9

Key words