Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Characterization and antioxidant activity of Amazonian woods

Abstract

The heartwood and sapwood characteristics of 11 Amazonian trees were investigated. Whereas 7 of the specimens had densities greater than 0.7 g/cm3, the heartwood density of ipê amarelo (Tabebuia serratifolia), maçaranduba (Manilkara huberi), cumaru-ferro (Dipteryx odorata), and guarita (Astronium lecointei) exceeded 1.0 g/cm3. Jatobá contained small amounts of Klason lignin and α-cellulose, and large amounts of holocellulose and alkali extract, suggesting that it has a high polysaccharide content that can be dissolved in an alkaline medium. The difference in the syringyl/guaiacyl (S/G) ratios of the samples before and after alkali extraction suggests that alkali extracts contain syringyl-type polyphenols. In all of the samples, the heart-wood methanol extracts were larger in volume than the sapwood methanol extracts, and the sapwood alkali extracts were larger in volume than the heartwood alkali extracts. The antioxidant activities of the methanol and alkali extracts were assayed by measuring the levels of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and super oxide dismutase (SOD)-like activity, respectively. The heart-wood methanol extract of jatobá (Hymenaea courbaril) exhibited the highest level of activity (EC50 = 44 mg/l), which exceeded that of α-tocopherol (EC50 = 48 mg/l), and the heartwood alkali extracts of jatobá and ipê amarelo had high SOD-like activity comparable with red wine.

References

  1. Fearnside PM (2006) Deforestation in Amazonia: dynamics, impacts and control (in Portuguese). Acta Amazonica 36:395–400

    Article  Google Scholar 

  2. Mihara R, Barry KM, Mohammed AL, Mitsunaga T (2005) Com-parison of antifungal of Acacia mangium and A. auriculiformis heartwood extracts. J Chem Ecol 31:789–803

    Article  CAS  PubMed  Google Scholar 

  3. Shimizu K, Kondo R, Sakai K, Buabarn S, Dilokkunanant U (2000) The 5-reductase inhibitory component from leaves of Artocarpus altilis. J Wood Sci 46:385–389

    Article  CAS  Google Scholar 

  4. Shimizu K, Kondo R, Sakai K (2002) Antioxidant activity of heart-wood extracts of Papua New Guinean wood. J Wood Sci 48: 446–450

    Article  CAS  Google Scholar 

  5. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49:3420–3424

    Article  CAS  PubMed  Google Scholar 

  6. Wu JH, Tung YT, Wang SY, Shyur LF, Kou YH, Chang ST (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J Agric Food Chem 53:5917–5921

    Article  CAS  PubMed  Google Scholar 

  7. Solon S, Lopes L, Sousa PT Jr, Schmeda-Hirschmann G (2000) Free radical scavenging activity of Lafoensia pacari. J Ethnopharmacol 72:173–178

    Article  CAS  PubMed  Google Scholar 

  8. Park B, Lee K, Shibanoto T, Lee S, Takeoka GR (2003) Antioxidant activity and characterization of volatile constituents of Taheebo (Tabebuia impetiginosa Martius ex DC). J Agric Food Chem 51:295–300

    Article  CAS  PubMed  Google Scholar 

  9. Kawamura F, Ohara S, Nishida A (2004) Antifungal activity of constituents from the heartwood of Gmelina arborea: part 1. Sensi-tive antifungal assay against Basidiomycetes. Holzforschung 58: 189–192

    Article  CAS  Google Scholar 

  10. Kawamura F, Ohara S (2005) Antifungal activity of iridoid glyco-sides from the heartwood of Gmelina arborea. Holzforschung 59:153–155

    Article  CAS  Google Scholar 

  11. Inatani R, Nakatani N, Fuwa H (1983) Antioxidative effect of the constituents of Rosemary (Rosmarinus offi cinalis L.) and their derivatives. Agric Biol Chem 47:521–528

    CAS  Google Scholar 

  12. Hattori Y (2000) Physical analysis, physical properties of wood, density (in Japanese). In: Japan Wood Research Society (ed) Experimental manual for wood science. Buneido, Japan, pp 160–161

  13. Kuroda K (2000) Chemical analysis, major components of wood (in Japanese). In: Japan Wood Research Society (ed) Experimental manual for wood science. Buneido, Japan, pp 92–97

  14. Roland C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 334–349

    Chapter  Google Scholar 

  15. Ukeda H, Moriyama H, Kawana D, Katayama Y, Nakabayashi K, Sawamura M (2002) Application of novel assay methods for super-oxide anion-scavenging activity to food samples (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi 49:25–31

    Article  CAS  Google Scholar 

  16. Watanabe Y, Sano Y, Asada T, Funada R (2006) Histochemical study of the chemical composition of vestured pits in two species of Eucalyptus. IAWA J 27:33–43

    Article  Google Scholar 

  17. Watanabe Y, Kojima Y, Ona T, Asada T, Sano Y, Fukazawa K, Funada R (2004) Histochemical study on heterogeneity of lignin in Eucalypts species II. The distribution of lignins and polyphenols in the walls of various cell types. IAWA J 25:283–295

    Article  Google Scholar 

  18. Kukić J, Petrović S, Niketić M (2006) Antioxidant activity of four endemic Stachys Taxa. Biol Pharmaceut Bull 29:725–729

    Article  Google Scholar 

  19. Kai Y (1965) On the phenolic constituents from Cryptomeria japonica D. Don. III. The structure of sugiresinol. Mokuzai Gakkaishi 11:23–26

    CAS  Google Scholar 

  20. Kai Y, Shimizu M (1968) On the phenolic constituents from Cryp-tomeria japonica D. Don. V. The structure of hydroxysugiresionl (in Japanese). Mokuzai Gakkaishi 14:430–433

    CAS  Google Scholar 

  21. Takahashi K (1981) Heartwood phenols and their signifi cance to color in Cryptomeria japonica D. Don. Mokuzai Gakkaishi 27:654–657

    CAS  Google Scholar 

  22. Wen X, Takenaka M, Murata M, Homma S (2004) Antioxidative activity of a zinc-chelating substance in coffee. Biosci Biotechnol Biochem 68:2313–2318

    Article  CAS  PubMed  Google Scholar 

  23. Eyles A, Davies NW, Mitsunaga T, Mihara R, Mohammed C (2004) Role of Eucalyptus globulus wound wood extractives: evidence of superoxide dismutase-like activity. Forest Pathol 34:225–232

    Article  Google Scholar 

  24. Moriyama H, Katayama Y, Nakabayashi K, Ukeda H, Sawamura M (2002) Superoxide anion-scavenging activity of foods produced in Kochi prefecture (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi 49:679–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, R., Matsushita, Y., Imai, T. et al. Characterization and antioxidant activity of Amazonian woods. J Wood Sci 54, 174–178 (2008). https://doi.org/10.1007/s10086-007-0913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-007-0913-9

Key words