Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Inhibitory effects of l-pipecolic acid from the edible mushroom, Sarcodon aspratus, on angiotensin I-converting enzyme

Abstract

The aqueous extract of the edible mushroom Sarcodon aspratus showed inhibitory effects against angiotensin I-converting enzyme (ACE). l-Pipecolic acid (l-piperidine-2-carboxylic acid) was isolated from a hot-water extract in a 0.02% yield as an active principle. The mode of inhibition of l-pipecolic acid was found to be competitive, whereas its d-isomer showed no significant inhibitory effects against ACE, suggesting that the configuration of the carboxyl group in the molecule plays an important role in the enzyme inhibition.

References

  1. Hollenberg NK (1979) Pharmacologic interrupting the reninangiotensin system. Ann Rev Pharmacol 19:559–582

    Article  CAS  Google Scholar 

  2. Cheung HS, Cushman DW (1973) Inhibition of homogeneous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops jararaca. Biochim Biophys Acta 293:451–463

    Article  CAS  PubMed  Google Scholar 

  3. Li G-H, Le G-W, Shi Y-H, Shrestha S (2004) Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24:469–486

    Article  CAS  Google Scholar 

  4. Choi HS, Cho HY, Yang HC, Ra KS, Suh HJ (2001) Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res Int 34:177–182

    Article  CAS  Google Scholar 

  5. Lee DH, Kim JH, Park JS, Choi YJ, Lee JS (2004) Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides 25:621–627

    Article  CAS  Google Scholar 

  6. Sakamoto Y, Takeuchi A, Sato T, Obara K, Takai K, Fujino K, Hirose T, Inagaki Y (2001) Identification of antihypertensive substance in an aqueous extract from fruit body of Mycoleptodonoides aitchisonii. Oyo Yakuri/Pharmacometrics 61:221–229

    CAS  Google Scholar 

  7. Tateishi K, Hosono T, Shimazu S, Fujimoto M (2000) Anti-allergenic properties of the fruiting bodies of Sarcodon asptatus (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi 47:281–286

    Article  CAS  Google Scholar 

  8. Kiyoto M, Suzuki H, Hara T, Yagi Y, Cho N-S, Aoyama M (2005) Moderate angiotensin I converting enzyme (ACE) inhibitor from the fruit body of Sarcodon aspratus. Mushroom Sci Biotechnol 13:189–194

    Google Scholar 

  9. Suzuki H, Kiyoto M, Nobuyama N, Hara T, Yagi Y, Togashi I, Aoyama M (2006) Moderate angiotensin I converting enzyme (ACE) inhibitors from the edible mushroom Pleurotus citrinopileatus Singer (Agaricomycetideae). Int J Med Mushrooms 8:45–47

    Article  CAS  Google Scholar 

  10. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  PubMed  Google Scholar 

  11. Bush K, Henry PR, Slusarchyk DS (1984) Muraceins — muranyl peptides produced by Nocardia orientalis as angiotensinconverting enzyme inhibitors. I. Taxonomy, fermentation and biological properties. J Antibiot 37:330–335

    Article  CAS  PubMed  Google Scholar 

  12. Oh C-H, Kim J-H, Kim K-R, Mabry TJ (1995) Rapid gas chromatographic screening of edible seeds, nuts and beans for nonprotein and protein amino acids. J Chromatogr A 708:131–141

    Article  CAS  PubMed  Google Scholar 

  13. Inoue H, Sakata Y, Fukunaga K, Nishio H, Tsuruta Y (2004) Sensitive determination of pipecolic acid in serum by high-performance liquid chromatography using 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride as a fluorescent labeling reagent. Anal Chim Acta 511:267–271

    Article  CAS  Google Scholar 

  14. Kerckaert I, Poll BT, Espeel M, Duran M, Roeleveld ABC, Wanders RJA, Roels F (2000) Hepatic peroxisomes in isolated hyperpipecolic acidaemia: evidence supporting its classification as a single peroxisomal enzyme deficiency. Virchows Arch 436:459–465

    Article  CAS  PubMed  Google Scholar 

  15. Kusano G, Ogawa H, Takahashi A, Nozoe S, Yokoyama K (1987) A new amino acid, (2S, 3R)-(-)-3-hydroxybaikiain from Russula subnigricans Hongo. Chem Pharm Bull 35:3482–3486

    Article  CAS  Google Scholar 

  16. Stefan R-I, Nejem RM, Staden JF, Aboul-Enein HY (2003) Biosensors for the enantioselective analysis of pipecolic acid. Sensor Actuat B-Chem 94:271–275

    Article  CAS  Google Scholar 

  17. Fujita T, Fujita M, Kodama T, Hada T, Higashino K (2003) Determination of d-and l-pipecolic acid in food samples including processed foods. Ann Nutr Metab 47:165–169

    Article  CAS  PubMed  Google Scholar 

  18. Ondetti MA, Cushman DW (1982) Enzymes of the reninangiotensin system and their inhibitors. Ann Rev Biochem 51:283–308

    Article  CAS  PubMed  Google Scholar 

  19. Tzakos AG, Naqvi N, Comporozos K, Pierattelli R, Theodorou V, Husain A, Gerothanassis IP (2006) The molecular basis for the selection of captopril cis and trans conformations by angiotensin I converting enzyme. Bioorg Med Chem Lett 16:5084–5087

    Article  CAS  PubMed  Google Scholar 

  20. Moulin M, Deleu C, Larher FR, Bouchereau A (2002) High-performance liquid chromatography determination of pipecolic acid after precolumn ninhydrin derivatization using domestic microwave. Anal Biochem 308:320–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Aoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyoto, M., Saito, S., Hattori, K. et al. Inhibitory effects of l-pipecolic acid from the edible mushroom, Sarcodon aspratus, on angiotensin I-converting enzyme. J Wood Sci 54, 179–181 (2008). https://doi.org/10.1007/s10086-007-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-007-0923-7

Key words