Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood

Abstract

The rate of thermal degradation of wood as a function of the extent of heat-bath treatment was investigated. At both 150°C and 170°C, the rate of degradation increased along with increasing relative humidity in the heating atmosphere. However, up to intermediate relative humidity (in the vicinity of 50%), the higher the temperature, the less was the effect of increasing relative humidity on the degradation rate. Furthermore, the greater the relative humidity, the less was the effect of increasing temperature on the degradation rate. On the other hand, between intermediate relative humidity and water-saturated conditions, the effect of increasing relative humidity on the degradation rate was the same regardless of the temperature, and the effect of increasing temperature on the degradation rate was the same regardless of the relative humidity. In moist conditions, significant thermal degradation occurred at temperatures as low as 150°C.

References

  1. Stamm AJ, Burr HK, Kline AA (1946) Staybwood ... Heatstabilized wood. Ind Eng Chem 38:630–634

    Article  CAS  Google Scholar 

  2. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  3. Militz H (2002) Heat treatment technologies in Europe: scientific background and technological state-of-art. In: Enhancing the durability of lumber and engineered wood products. Forest Products Society, Kissimmee, FL, USA, February 11–13, 2002

    Google Scholar 

  4. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546

    Article  CAS  Google Scholar 

  5. Obataya E, Shibutani S, Hanata K, Doi S (2006) Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) I: changes in hygroscopicity due to heating. J Wood Sci 52:33–38

    Article  Google Scholar 

  6. LeVan SL (1989) Thermal degradation. In: Schniewind AP (ed) Concise encyclopedia of wood and wood-based materials, 1st edn. Pergamon, Elmsford NY, pp 271–273

    Google Scholar 

  7. White RH, Dietenberger MA (2001) Wood products: thermal degradation and fire. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam, pp 9712–9716

    Chapter  Google Scholar 

  8. Alén R, Rytkönen S, McKeough P (1995) Thermogravimetric behavior of black liquors and their organic constituents. J Anal Appl Pyrol 31:1–13

    Article  Google Scholar 

  9. Zaman A, Alén R, Kotilainen R (2000) Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200-230°C. Wood Fiber Sci 32:138–143

    CAS  Google Scholar 

  10. Kim DY, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55:521–524

    Article  CAS  Google Scholar 

  11. Alén R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea Abies) at 180-225°C. Wood Sci Technol 36:163–171

    Article  Google Scholar 

  12. Phuong LX, Shida S, Saito Y (2007) Effects of heat treatment on brittleness of Styrax tonkinensis wood. J Wood Sci 53:181–186

    Article  CAS  Google Scholar 

  13. Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48:413–417

    Article  CAS  Google Scholar 

  14. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613

    Google Scholar 

  15. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  CAS  Google Scholar 

  16. Hirosawa S, Minato K, Nakatsubo F (2001) Influence of carboxyl group on the acid hydrolysis of cellulose. J Wood Sci 47:141–144

    Article  CAS  Google Scholar 

  17. Weiland JJ, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61:216–220

    CAS  Google Scholar 

  18. Garrote G, Domínguez H, Parajó JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh Werkst 59:53–59

    Article  CAS  Google Scholar 

  19. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63:102–111

    Article  CAS  Google Scholar 

  20. Passard J, Perré P (2004) Creep of wood at high temperature: thermal activation or thermal degradation? In: Timber drying for value-added products. Cost E15 Conference, NAGREF/Forest Research Institute, Athens, Greece, April 22–24, 2004

  21. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  22. Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208

    CAS  Google Scholar 

  23. Karmas R, Buera MP, Karel M (1992) Effect of glass transition on rates of nonenzymatic browning in food systems. J Agric Food Chem 40:873–879

    Article  CAS  Google Scholar 

  24. Bhandari BR, Howes T (1999) Implication of glass transition for the drying and stability of dried foods. J Food Eng 40:71–79

    Article  Google Scholar 

  25. Back EL, Salmén NL (1982) Glass transitions of wood components hold implications for molding and pulping processes. TAPPI 65:107–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Borrega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrega, M., Kärenlampi, P.P. Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci 54, 323–328 (2008). https://doi.org/10.1007/s10086-008-0953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-008-0953-9

Key words