Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

At5g54160 gene encodes Arabidopsis thaliana 5-hydroxyconiferaldehyde O-methyltransferase

Abstract

The function of an Arabidopsis thaliana gene, At5g54160 annotated as a caffeic acid O-methyltransferase CAOMT gene was characterized. The recombinant enzyme of this gene (AtOMT1) catalyzed the O-methylation of phenylpropanoid and flavonoid substrates. The specificity constants (k cat/K m) for 5-hydroxyconiferaldehyde (5-HCAld) and quercetin were both 0.11 μM−1·min−1. On the other hand, lignins of At5g54160-knockout Arabidopsis mutants lacked syringyl units. In addition, we showed that the gene silencing also resulted in significant accumulation of caffeyl alcohol (CaAlc). These results strongly suggested that At5g54160 gene is involved in syringyl lignin synthesis for the methylation of both 5-hydroxyconiferaldehyde and 3,4-dihydroxyphenyl compound(s).

References

  1. Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, pp 141–160

    Chapter  Google Scholar 

  2. Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Garraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Wang J, Goodman HM (1997) An Arabidopsis gene encoding a putative 14-3-3-interacting protein caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochem Biophys Acta 1353:199–202

    CAS  PubMed  Google Scholar 

  5. Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 375:385–388

    Article  CAS  PubMed  Google Scholar 

  6. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barriere Y, Lappierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant defi cient in the expression of O-methyltransferase impacts lignin and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  CAS  PubMed  Google Scholar 

  7. Bouktaib M, Lebrum S, Atmani A, Rolando C (2002) Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron 58:10001–10009

    Article  CAS  Google Scholar 

  8. Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T (2007) Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotopedilution method. Org Biomol Chem 5:802–815

    Article  CAS  PubMed  Google Scholar 

  9. Stockigt J, Zenk MH (1975) Chemical synthesis and properties of hydroxycinnamoyl Coenzyme A derivatives. Z Naturforsch 30: 352–358

    CAS  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Kai K, Shimizu BI, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67:379–386

    Article  CAS  PubMed  Google Scholar 

  12. Hamada K, Tsutsumi Y, Yamauchi K, Fukushima K, Nishida T (2003) Treatment of poplar callus with ferulic and sinapic acids I: incorporation and enhancement of lignin biosynthesis. J Wood Sci 49:333–338

    Article  CAS  Google Scholar 

  13. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96: 10045–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  CAS  PubMed  Google Scholar 

  16. Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  CAS  PubMed  Google Scholar 

  17. Matsui N, Chen F, Yasuda S, Fukushima K (2000) Conversion of guaiacyl to syringyl moieties on the cinnamyl alcohol pathway during the biosynthesis of lignin in angiosperms. Planta 210: 831–835

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Umezawa.

Additional information

Part of this work was presented at the Annual Meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry, March 24–27, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatsubo, T., Kitamura, Y., Sakakibara, N. et al. At5g54160 gene encodes Arabidopsis thaliana 5-hydroxyconiferaldehyde O-methyltransferase. J Wood Sci 54, 312–317 (2008). https://doi.org/10.1007/s10086-008-0958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-008-0958-4

Key words