Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Heartwood extractives from the Amazonian trees Dipteryx odorata, Hymenaea courbaril, and Astronium lecointei and their antioxidant activities

Abstract

Heartwood extracts from Amazonian trees cumaru-ferro (Dipteryx odorata), jatoba (Hymenaea courbaril), and guarita (Astronium lecointei) exhibit antioxidant activities comparable with that of α-tocopherol, a well-known antioxidant. This article reports the characterization of the antioxidant compounds in the extracts of the three heartwoods. Silica gel column chromatography of the cumaru-ferro EtOAc extract yielded (−)-(3R)-7,2′,3′-trihydroxy-4′-methoxyisoflavan and (+)-(3R)-8,2′,3′-trihydroxy-7,4′-dimethoxyisoflavan. Silica gel column chromatography followed by preparative high-performance liquid chromatography of the jatoba EtOAc extract yielded (−)-fisetinidol and (+)-trans-taxifolin. Chemical structures were assigned using electron-ionization mass spectrometry, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy including nuclear Overhauser effect spectroscopy (NOESY), as well as optical rotation and circular dichroism. Gas chromatography-mass spectrometry demonstrated that the isolated compounds were predominant in the EtOAc extracts. In the guarita EtOAc extract, catechin and gallic acid were identified by comparing their retention times and mass fragmentation patterns with those of authentic samples. Antioxidant activity determined by the 1,1-diphenyl-2-picrylhydrazyl assay demonstrated that all these compounds had activities comparable with that of α-tocopherol.

References

  1. Suzuki R, Matsushita Y, Imai T, Sakurai M, Henriques de Jesus JM, Ozaki SK, Finger Z, Fukushima K (2008) Characterization and antioxidant activity of Amazon wood. J Wood Sci 54:174–178

    Article  CAS  Google Scholar 

  2. Roming TL, Weber ND, Murray BK, North JA, Wood SG, Hughes BG, Cates RG (1992) Antiviral activity of Panamanian plant extracts. Phytother Res 6:38–43

    Article  Google Scholar 

  3. Desmarchelier C, Romao RL, Coussio J, Ciccia G (1999) Antioxidant and free radical scavenging activities in extracts from medicinal trees used in the “Caatinga” region in northeastern Brazil. J Ethnopharmacol 67:69–77

    Article  CAS  PubMed  Google Scholar 

  4. Rovira I, Berkov A, Parkinson A, Tavakilian G, Mori S, Meurer-Grimes B (1999) Antimicrobial activity of neotropical wood and bark extracts. Pharm Biol 37:208–215

    Article  Google Scholar 

  5. Granato D, Nunes DS, de Mattos PP, Rios ED, Glinski A, Rodrigues LC, Zanusso G (2005) Chemical and biological evaluation of rejects from the wood industry. Braz Arch Biol Technol 48:237–241

    Article  Google Scholar 

  6. Suffredini IB, Paciencia ML, Frana SA, Varella AD, Younes RN (2007) In vitro breast cancer cell lethality of Brazilian plant extracts. Pharmazie 62:798–800

    CAS  PubMed  Google Scholar 

  7. de Mesquita ML, Grellier P, Mambu L, de Paula JE, Espindola LS (2007) In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J Ethnopharmacol 110:165–170

    Article  PubMed  Google Scholar 

  8. Inatani R, Nakatani N, Fuwa H (1983) Anitioxidative effect of the constituents of Rosemary (Rosmarinus officinalis L.) and their derivatives. Agric Biol Chem 47:521–528

    CAS  Google Scholar 

  9. Deharo E, Baelmans R, Gimenez A, Quenevo C, Bourdy G (2004) In vitro immunomodulatory activity of plants used by the Tacana ethnic group in Bolivia. Phytomedicine 11:516–522

    Article  CAS  PubMed  Google Scholar 

  10. Herath HMTB, Dassanayake RS, Priyadarshani AMA, De Silva S, Wannigama GP, Jamie J (1998) Isoflavonoids and a pterocarpan from Gliricidia sepium. Phytochemistry 47:117–119

    Article  CAS  Google Scholar 

  11. Rao CP, Krupadanam GLD (1994) An isoflavan from Millettia racemosa. Phytochemistry 35:1597–1599

    Article  CAS  Google Scholar 

  12. Tanaka H, Tanaka T, Hosoya A, Kitade Y, Etoh H (1998) An isoflavan from Erythrina × bidwillii. Phytochemistry 47:1397–1400

    Article  CAS  Google Scholar 

  13. Chunqing S, Zhiren Z, Di L, Zhibi H (1997) Antimicrobial isoflavans from Astragalus membranaceus (Fisch.) Bunge. Trad Chin Med Pharm 39:486–488

    Google Scholar 

  14. Lambert M, Staerk D, Hansen SH, Sairafianpour M, Jaroszewski JW (2005) Rapid extract dereplication using HPLC-SPE-NMR: analysis of isoflavonoids from Smirnowia iranica. J Nat Prod 68:1500–1509

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka T, Ohyama M, Iinuma M, Shirataki Y, Komatsu M, Charles LB (1998) Isoflavonoids from Sophora secundiflora, S. arizonica and S. gypsophila. Phytochemistry 48:1187–1193

    Article  CAS  Google Scholar 

  16. Hayashi T, Thomson RH (1974) Isoflavones from Dipteryx odorata. Phytochemistry 13:1943–1946

    Article  CAS  Google Scholar 

  17. Piacene S, Balderrama L, Tommasi ND, Morales L, Vargas L, Pizza C (1999) Anadanthoside: a flavonol-3-O-β-d-xylopyranoside from Anadenathera macrocarpa. Phytochemistry 51:709–711

    Article  Google Scholar 

  18. Brookes KB, Katsoulis LC (2006) Bioactive components of Rhoicissus tridentara: a pregnancy-related traditional medicine. S Afr J Sci 102:267–272

    CAS  Google Scholar 

  19. Kubo I, Murai Y, Chaudhuri SK (1993) Castelalin, a quassinoid from Castela tortuosa. Phytochemistry 33:461–463

    Article  CAS  Google Scholar 

  20. Mathisen E, Dialio D, Andersen OM, Malter KE (2002) Antioxidants from the bark of Burkea africana, an African medicinal plant. Phytother Res 16:148–153

    Article  CAS  PubMed  Google Scholar 

  21. Korver O, Wilkins CK (1971) Circular dichroism spectra of flavonols. Tetrahedron 27:5459–5465

    Article  CAS  Google Scholar 

  22. Martin SS, Langenheim JH (1972) Sesquiterpenes in leaf pocket resin of Hymenaea courbaril. Phytochemistry 11:3049–3051

    Article  CAS  Google Scholar 

  23. Khoo SF, Oehlschlager AC (1973) Structure and stereochemistry of the diterpenes of Hymenaea courbaril (Caesalpinioideae) seed pod resin. Tetrahedron 29:3379–3388

    Article  CAS  Google Scholar 

  24. Nogueira RT, Shepherd GJ, Laverde A, Marsaioli AJ, Imamura PM (2001) Clerodane-type diterpenes from the seed pods of Hymenaea courbaril var. stilbocarpa. Phytochemistry 58:1153–1157

    Article  CAS  PubMed  Google Scholar 

  25. Nogueira RT, Queiroz SCN, Imamura PM (2002) Semi-preparative HPLC separation of terpenoids from the seed pods of Hymenaea courbaril var. stilbocarpa. J Liq Chrom Rel Technol 25:59–67

    Article  CAS  Google Scholar 

  26. Abdel-Kader M, Berger JM, Slebodnick C, Hoch J, Malone S, Wisse JH, Werkhoven MCM, Mamber S, Kingston DGI (2002) Isolation and absolute configuration of ent-halimane diterpenoids from Hymenaea courbaril from the suriname rain forest. J Nat Prod 65:11–15

    Article  CAS  PubMed  Google Scholar 

  27. Cunningham A, Martin SS, Langenheim JH (1974) Labd-13-en-8-ol-15-oic acid in the trunk resin of Amazonian Hymenaea courbaril. Phytochemistry 13:294–295

    Article  CAS  Google Scholar 

  28. Lundgren LN, Theander O (1988) Cis- and trans-dihydroquercetin glucoside from needles of Pinus sylvestris. Phytochemistry 27:829–832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Imai.

Additional information

Part of this report was presented at the 57th Annual Meeting of the Japan Wood Research Society, Hiroshima, August 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, T., Inoue, S., Ohdaira, N. et al. Heartwood extractives from the Amazonian trees Dipteryx odorata, Hymenaea courbaril, and Astronium lecointei and their antioxidant activities. J Wood Sci 54, 470–475 (2008). https://doi.org/10.1007/s10086-008-0975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-008-0975-3

Key words