Skip to main content

Official Journal of the Japan Wood Research Society

Journal of Wood Science Cover Image

Structure and properties of the cellulose microfibril

Abstract

The current structural models of the cellulose microfibril as well as its mechanical and thermal properties are reviewed. The cellulose microfibril can be considered as a single thin and long crystalline entity with highly anisotropic physical properties. The contribution and limit of different methods employed such as electron microscopy, infrared spectroscopy, X-ray scattering and diffraction, solid state nuclear magnetic resonance spectroscopy, and molecular modeling are also discussed.

References

  1. 1.

    Sponsler OL (1931) Orientation of cellulose space lattice in the cell wall. Additional X-ray data from Valonia cell-wall. Protoplasma 12:241–255

    Article  Google Scholar 

  2. 2.

    Mukherjee SM, Woods HJ (1953) X-Ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Frey-Wyssling A (1955) On the crystal structure of cellulose I. Biochim Biophys Acta 18:166–168

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cousins SK, Brown RM Jr (1995) Cellulose I microfibril assembly-computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888

    CAS  Article  Google Scholar 

  6. 6.

    Kreger AR (1957) New crystallite orientations of cellulose I in Spirogyra cell walls. Nature 180:914–915

    CAS  Article  Google Scholar 

  7. 7.

    Kim NH, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160

    CAS  Article  Google Scholar 

  9. 9.

    Revol JF, Gancet C, Goring DAI (1982) Orientation of cellulose crystallites in the S2 layer of spruce and birch wood cell walls. Wood Sci 14:120–126

    CAS  Google Scholar 

  10. 10.

    Näslund P, Vuong R, Chanzy H, Jésior JC (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417

    Article  Google Scholar 

  11. 11.

    Bourret A, Chanzy H, Lazaro R (1972) Crystallite features of Valonia cellulose by electron diffraction and dark-field electron microscopy. Biopolymers 11:893–898

    CAS  Article  Google Scholar 

  12. 12.

    Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1984) High resolution observations of cellulose microfibrils. Mokuzai Gakkaishi 30:98–99

    Google Scholar 

  13. 13.

    Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microbrils. Polymer 44:1871–1879

    CAS  Article  Google Scholar 

  14. 14.

    Kuga S, Brown RM Jr (1987) Lattice imaging of ramie cellulose. Polym Commun 28:311–314

    CAS  Article  Google Scholar 

  15. 15.

    Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Helbert W, Sugiyama J, Kimura S, Itoh T (1998) High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma 203:84–90

    Article  Google Scholar 

  17. 17.

    Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134

    CAS  Article  Google Scholar 

  19. 19.

    Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulosesynthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Goto T, Harada H, Saiki H (1975) Cross-sectional view of microfibrils in gelatinous layer of poplar tension wood (Populus euramericana). Mokuzai Gakkaishi 21:537–542

    Google Scholar 

  21. 21.

    Nieduszynski I, Preston RD (1970) Crystallite size in natural celluloses. Nature 225:273–274

    CAS  Article  Google Scholar 

  22. 22.

    Hindeleh AM, Johnson DJ (1972) Crystallinity and crystallite size measurement in cellulose fibres: 1. Ramie and fortisan. Polymer 13:423–430

    CAS  Article  Google Scholar 

  23. 23.

    Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70

    CAS  Google Scholar 

  24. 24.

    Heyn ANJ (1955) Small particle X-ray scattering by fibers, size and shape of microcrystallites. J Appl Phys 26:519–526

    CAS  Article  Google Scholar 

  25. 25.

    Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Preston RD (1974) General principles of wall architecture. In: The physical biology of plant cell walls. Chapman Hall, London pp 163–191

    Google Scholar 

  27. 27.

    Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Piceas abies. J Struct Biol 113:13–22

    Article  Google Scholar 

  28. 28.

    Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    CAS  Article  Google Scholar 

  29. 29.

    Müller M, Czihak C, Vogl G, Fratzl P, Schober H, Riekel C (1998) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957

    Article  Google Scholar 

  30. 30.

    Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) 13C NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251

    CAS  Article  Google Scholar 

  31. 31.

    Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574

    CAS  Article  Google Scholar 

  32. 32.

    VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    CAS  Article  Google Scholar 

  33. 33.

    Newman RH (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp, and isolated celluloses. Holzforschung 52:157–159

    CAS  Article  Google Scholar 

  34. 34.

    Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    CAS  Article  Google Scholar 

  35. 35.

    Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spinlattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595

    Article  PubMed  Google Scholar 

  37. 37.

    Horikawa Y, Sugiyama J (2008) Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR techniques. Cellulose 15:419–424

    CAS  Article  Google Scholar 

  38. 38.

    Horikawa Y, Clair B, Sugiyama J (2009) Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose 16:1–8

    CAS  Article  Google Scholar 

  39. 39.

    Müller M, Czihak C, Schober H, Nishiyama Y, Vogl G (2000) All disordered regions of native cellulose show common lowfrequency dynamics. Macromolecules 33:1834–1840

    Article  Google Scholar 

  40. 40.

    Reis D, Vian B, Roland JC (1994) Cellulose-glucuronoxylans and plant cell wall structure. Micron 25:171–187

    CAS  Article  Google Scholar 

  41. 41.

    Franke WW, Ermen B (1969) Negative staining of plant slime cellulose: an examination of the elementary fibril concept. Z Naturforsch 24b:918–922

    Google Scholar 

  42. 42.

    Lepoutre P, Robertson AA (1974) Colloidal solutions from sodium polyacrylate-polylacrylamide grafted cellulose. TAPPI 57:87–90

    CAS  Google Scholar 

  43. 43.

    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  Google Scholar 

  46. 46.

    Tsuji W, Nakao T, Hirai A, Horii F (1992) Properties and structure of never-dried cotton fibers. III. Cotton fibers from bolls in early stages of growth. J Appl Polym Sci 45:299–307

    CAS  Article  Google Scholar 

  47. 47.

    Rowland SP, Roberts EJ (1972) The nature of accessible surfaces in the microstructure of cotton celluloses. J Polym Sci Polym Chem 10:2447–2461

    CAS  Article  Google Scholar 

  48. 48.

    Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Marrinan HJ, Mann J (1956) Infrared spectra of the crystalline modifications of cellulose. J Polym Sci 21:301–311

    Article  Google Scholar 

  51. 51.

    Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328

    CAS  Article  Google Scholar 

  52. 52.

    Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7:486–494

    CAS  Article  Google Scholar 

  53. 53.

    Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    CAS  Article  Google Scholar 

  55. 55.

    Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell walls II. Crystallite size and several peak positions of X-ray diagram of cellulose I. Mokuzai Gakkaishi 27:709–715

    CAS  Google Scholar 

  56. 56.

    Nishimura H, Okano T, Asano I (1982) Fine structure of wood cell walls III. On the natural occurrence of cellulose IV. In red meranti. Mokuzai Gakkaishi 28:484–485

    CAS  Google Scholar 

  57. 57.

    Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    CAS  Article  Google Scholar 

  58. 58.

    Gardner KH, Blackwell J (1974) The hydrogen bonding in native cellulose. Biochim Biophys Acta 343:232–237

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie celluloses. Macromolecules 13:1183–1187

    CAS  Article  Google Scholar 

  60. 60.

    French AD, Roughead WA, Miller DP (1987) X-Ray diffraction studies of ramie cellulose I. In: Atalla RH (ed) The structures of cellulose. ACS Symposium Series 340. American Chemical Society, pp 15–38

  61. 61.

    Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810

    CAS  Article  Google Scholar 

  62. 62.

    Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288

    CAS  Article  Google Scholar 

  63. 63.

    Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Marrinan HJ, Mann J (1954) A study by infra-red spectroscopy of hydrogen bonding in celluloses. J Appl Chem 4:204–211

    CAS  Article  Google Scholar 

  67. 67.

    Huggins CM, Pimentel GC (1956) Systematics of the infrared spectral properties of hydrogen bonding systems: frequency shift, half width and intensity. J Phys Chem 60:1615–1619

    CAS  Article  Google Scholar 

  68. 68.

    Hinterstoisser B, Salmén L (1999) Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of cellulose I. Cellulose 6:251–263

    CAS  Article  Google Scholar 

  69. 69.

    Hinterstoisser B, Salmén L (2000) Application of dynamic 2D FTIR to celluloses. Vib Spectrosc 22:111–118

    CAS  Article  Google Scholar 

  70. 70.

    Hinterstoisser B, Åkerholm M, Salmén L (2001) Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27–37

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Hinterstoisser B, Åkerholm M, Salmén L (2003) Load distribution in native celluloses. Biomacromolecules 4:1232–1237

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Nishiyama Y, Isogai A, Okano T, Müller M, Chanzy H (1999) Intracrystalline deuteration of native celluloses. Macromolecules 32:2078–2081

    CAS  Article  Google Scholar 

  73. 73.

    Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  Google Scholar 

  74. 74.

    Jones DW (1958) Crystalline modifications of cellulose. Part III. The derivation and preliminary study of possible crystal structures. J Polym Sci 32:371–394

    CAS  Article  Google Scholar 

  75. 75.

    Mazeau K (2005) Structural micro-heterogeneities of crystalline Ib-cellulose. Cellulose 12:339–349

    CAS  Article  Google Scholar 

  76. 76.

    Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562

    CAS  Article  Google Scholar 

  77. 77.

    Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Sakurada I, Nukushina Y, Itoh T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    CAS  Article  Google Scholar 

  79. 79.

    Sakurada I, Ito T, Nakamae K (1966) Elastic moduli of the crystal lattices of polymers. J Polym Sci C 15:75–91

    Article  Google Scholar 

  80. 80.

    Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275

    CAS  Article  Google Scholar 

  81. 81.

    Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651

    CAS  Article  Google Scholar 

  82. 82.

    Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468

    CAS  Article  Google Scholar 

  83. 83.

    Nakai T, Yamamoto H, Nakao T, Hamatake M (2006) Mechanical behavior of the crystal lattice of natural cellulose in wood under repeated uniaxial tension stress in the fiber direction. Wood Sci Technol 40:683–695

    CAS  Article  Google Scholar 

  84. 84.

    Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  PubMed  Google Scholar 

  85. 85.

    Eichhorn SJ, Hughes M, Snell R, Mott L (2000) Strain induced shifts in the Raman spectra of natural cellulose fibers. J Mater Sci Lett 19:721–723

    CAS  Article  Google Scholar 

  86. 86.

    Kölln K (2004) Morphologie und mechanische Eigenschaften von Zellulosefasern: Untersuchungenmit Röntgen-und Neutronenstreuung. PhD thesis Christian-Albrechts-Universität zu Kiel

  87. 87.

    Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polym Sci Polym Phys 42:1206–1211

    CAS  Article  Google Scholar 

  88. 88.

    Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative Poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Peura M, Kölln K, Grotkopp I, Saranpää P, Müller M, Serimaa R (2007) The effect of axial strain on crystalline cellulose in Norway spruce. Wood Sci Technol 41:565–583

    CAS  Article  Google Scholar 

  90. 90.

    Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517

    CAS  Article  Google Scholar 

  91. 91.

    Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    CAS  Article  Google Scholar 

  92. 92.

    Tashiro K, Kobayashi M (1991) Theoretical evaluation of threedimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    CAS  Article  Google Scholar 

  93. 93.

    Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    CAS  Article  Google Scholar 

  94. 94.

    Takahashi M, Takenaka H (1982) X-Ray study of thermal expansion and transition of crystalline celluloses. Polym J 14:675–679

    CAS  Article  Google Scholar 

  95. 95.

    Seitsonen S, Mikkonen I (1973) X-Ray study on the thermal expansion of cotton cellulose. Polym J 5:263–267

    CAS  Article  Google Scholar 

  96. 96.

    Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Ia to Iβ. Polym J 35:155–159

    CAS  Article  Google Scholar 

  97. 97.

    Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Polym Phys 40:1095–1102

    CAS  Article  Google Scholar 

  98. 98.

    Kim DY, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55:521–524

    CAS  Article  Google Scholar 

  99. 99.

    Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    CAS  Article  Google Scholar 

  100. 100.

    Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  PubMed  Google Scholar 

  101. 101.

    Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124–133124.3

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishiyama, Y. Structure and properties of the cellulose microfibril. J Wood Sci 55, 241–249 (2009). https://doi.org/10.1007/s10086-009-1029-1

Download citation

Key words

  • Cellulose microfibril
  • X-Ray diffraction
  • Transmission electron microscopy
  • 13C solid state NMR
  • Elastic modulus