Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Proteomic analysis of the G-layer in poplar tension wood

Abstract

Angiosperm trees bend their stems by forming tension wood at the upper side of leaning stems. Most tension wood has a cellulose-rich G-layer in the innermost surface of the fiber cell wall. Strong tensile stress is considered to occur in the G-layer. This study undertook to identify the proteins involved in G-layer formation and function through a proteomic analysis of G-layer-localized protein. G-layers of poplar were loosened by sonication and isolated as doughnut-shaped pieces of thinly sliced transverse sections. The proteins, once extracted with urea/detergent solution, were separated by two-dimensional polyacrylamide gel electrophoresis, and 110 spots were subjected to liquid chromatography tandem mass spectrometry (LC/MS/MS). A database search for these spots’ mass spectrum patterns identified 72 proteins. In addition, all peptide digestion mixtures of G-layer proteins were separated by strong cation exchange chromatography and 39 proteins were identified using LC/MS/MS analysis. Proteins involved in wall formation, such as lignin biosynthesis-related protein, xyloglucan endotransglucosylase, and fasciclin-like arabinogalactan protein, were notably detected in the G-layer.

References

  1. Fujita M, Sakai H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibres. Mokuzai Gakkaishi 20:147–156

    Google Scholar 

  2. Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar-a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    Article  CAS  PubMed  Google Scholar 

  3. Norberg PH, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.) Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  4. Lafarguette F, Leple JC, Dejardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  5. Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  CAS  PubMed  Google Scholar 

  6. Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  CAS  PubMed  Google Scholar 

  7. Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  Google Scholar 

  8. Baba K, Asada T, Hayashi T (2000) Relation between developmental changes on anatomical structure and on protein pattern in differentiating xylem of tension wood. J Wood Sci 46:1–7

    Article  CAS  Google Scholar 

  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  10. Kirk TK, Obst JR (1988) Lignin determination. Methods Enzymol 161:89–101

    Google Scholar 

  11. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794

    Article  CAS  Google Scholar 

  12. Scherrer P (1918) Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen 2:8–100

    Google Scholar 

  13. Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317

    Article  CAS  Google Scholar 

  14. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  15. Christensen JH, Overney S, Rohde A, Diaz WA, Bauw G, Simon P, Van Montagu M, Boerjan W (2001) The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol Biol 47:581–593

    Article  CAS  PubMed  Google Scholar 

  16. Bugos RC, Chiang VL, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215

    Article  CAS  PubMed  Google Scholar 

  17. Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211:502–509

    Article  Google Scholar 

  18. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Article  CAS  PubMed  Google Scholar 

  19. Gang DR, Kasahara H, Xia ZQ, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaku, T., Serada, S., Baba, K. et al. Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55, 250–257 (2009). https://doi.org/10.1007/s10086-009-1032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1032-6

Key words