Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana

Abstract

Four genes encoding glycoside hydrolase (GH) family 6 and 7 cellulases (cel6A, cel6B, cel7A, and cel7B) were obtained from the brown-rot fungus Coniophora puteana by genomic polymerase chain reaction (PCR) using consensus degenerate hybrid oligonucleotide primers (CODEHOPs) designated from the amino acid sequence of cellobiohydrolases (CBHs) from white-rot fungi. The nucleotide sequences of four genes showed high homology with basidiomycetes CBHs, suggesting the fi rst cloning of the genes encoding Cel6 and Cel7 from brown-rot fungi. PCR using CODEHOP pairs at the catalytic domain successfully amplifi ed both cel6A and cel6B, whereas only cel6A fragment was obtained using the primers including the carbohydrate-binding modules (CBMs), suggesting lack of CBM in Cel6B. Moreover, both cel7A and cel7B were amplified by the PCR using CODEHOP pairs at the catalytic domain, but not by those including CBM, suggesting the absence of Cel7 with CBM in the fungus. From these results, three of four cellulases from C. puteana may not carry CBM, which has an important role for the degradation of crystalline cellulose.

References

  1. Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24:3379–3390

    Article  CAS  Google Scholar 

  2. Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  3. Kim YS, Wi SG, Lee KH, Singh AP (2002) Cytochemical localization of hydrogen peroxide production during wood decay by brown rot fungi Tyromces palustris and Coniophora puteana. Holzforschung 56:7–12

    CAS  Google Scholar 

  4. Koenigs JW (1974) Production of hydrogen peroxide by woodrotting fungi in wood and its correlation with weight loss, depolymerizattion and pH changes. Arch Microbiol 99:129–145

    Article  CAS  Google Scholar 

  5. Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brownrot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388

    Article  CAS  Google Scholar 

  6. Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  8. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so effi cient on crystalline cellulose? Biochem Soc Trans 26:173–178

    Article  CAS  PubMed  Google Scholar 

  9. Uzcategui E, Ruiz A, Montersino R, Johansson G, Pettersson G (1991) The 1,4-β-d-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 19:271–286

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson T (1974) Comparative study on the cellulolytic activity of white-rot and brown-rot fungi. Mater Org 9:173–198

    Google Scholar 

  11. Schmidhalter DR, Canevascini G (1992) Characterization of the cellulolytic enzyme system from the brown-rot fungus Coniophora puteana. Appl Microbiol Biotechnol 37:431–436

    Article  CAS  Google Scholar 

  12. Schmidhalter DR, Canevascini G (1993) Purification and characterization of two exocellobiohydrolases from the brown rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch Biochem Biophys 300:551–558

    Article  CAS  PubMed  Google Scholar 

  13. Rose TM (2005) CODEHOP-mediated PCR—a powerful technique for the identifi cation and characterization of viral genomes. Virol J 2:20–43

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplifi cation of distantly related sequences. Nucleic Acids Res 26:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Highley TL (1973) Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber 5:50–58

    CAS  Google Scholar 

  18. Highley TL (1980) Cellulose degradation by cellulose-clearing and non-cellulose-clearing brown-rot fungi. Appl Environ Microbiol 40:1145–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reinikainen T, Ruobonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Proteins 14:475–482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Samejima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajisa, T., Igarashi, K. & Samejima, M. The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana . J Wood Sci 55, 376–380 (2009). https://doi.org/10.1007/s10086-009-1042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1042-4

Key words