Skip to main content

Official Journal of the Japan Wood Research Society

Volume 55 Supplement 6

Special Issue on Wood Science and Technology for Mitigation of Global Warming

  • Original Article
  • Published:

Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid

Abstract

Physical, chemical, and biological properties of wood depend largely on the properties of cellulose, noncellulosic polysaccharides, and lignin, and their assembly mode in the cell wall. Information on the assembly mode in the main part of the ginkgo tracheid wall (middle layer of secondary wall, S2) was drawn from the combined results obtained by physical and chemical analyses of the mechanically isolated S2 and by observation under scanning electron microscopy. A schematic model was tentatively proposed as a basic assembly mode of cell wall polymers in the softwood tracheid as follows: a bundle of cellulose microfibrils (CMFs) consisting of about 430 cellulose chains is surrounded by bead-like tubular hemicellulose-lignin modules (HLM), which keep the CMF bundles equidistant from each other. The length of one tubular module along the CMF bundle is about 16 ± 2 nm, and the thickness at its side is about 3–4 nm. In S2, hemicelluloses are distributed in a longitudinal direction along the CMF bundle and in tangential and radial directions perpendicular to the CMF bundle so that they are aligned in the lamellae of tangential and radial directions with regard to the cell wall. One HLM contains about 7000 C6-C3 units of lignin, and 4000 hexose and 2000 pentose units of hemicellulose.

References

  1. Terashima N, Fukushima K, He LF, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Madison, USA, pp 247–270

    Google Scholar 

  2. Timell TE (1986) Origin and evolution of compression wood. In: Compression wood in gymnosperms. Springer, Berlin Heidelberg New York, pp 597–621

    Chapter  Google Scholar 

  3. Terashima N (2007) Non-destructive approaches to identify the ultrastructure of lignified ginkgo cell walls. Int J Plant Develop Biol 1:170–177

    Google Scholar 

  4. Terashima N, Akiyama T, Ralph S, Evtuguin D, Pascoal Neto C, Parkås J, Paulsson M, Westermark U, Ralph J (2009) 2D-NMR (HSQC) difference spectra between specifically 13C-enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material. Holzforschung 63:379–384

    Article  CAS  Google Scholar 

  5. Terashima N, Yoshida M (2006) Observation of formation process of macromolecular lignin in the cell wall by electron microscope IV. Formation of hemicellulose-lignin module in black pine tracheid. Proceedings of the Annual Meeting of the Japan Wood Research Society Akita, Japan, PA005

  6. Terashima N, Awano T, Takabe T, Yoshida M (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. Comptes Rendus Biologies 327:903–910

    Article  CAS  PubMed  Google Scholar 

  7. Terashima N, Yoshida M (2005) Ultrastructural assembly of polysaccharides and lignin in lignifying plant cell walls. Proceedings of 13th International Symposium on Wood, Fiber, and Pulping Chemistry, Auckland, New Zealand, vol 2, pp 423–426

    Google Scholar 

  8. Browning BL (1967) Preparation of holocellulose by chlorite methods (Wise method) and determination of alpha-cellulose content. In: Methods of wood chemistry, vol 2. Interscience, New York, p 395, 418

    Google Scholar 

  9. Dence CW (1992) Determination of lignin in wood and pulp by the acetyl bromide method. In: Lin SY, Dence CW (eds) Methods in lignin chemistry, Springer, Berlin Heidelberg New York, pp 44–48

    Google Scholar 

  10. Yamamoto H, Okuyama T, Yoshida M (1993) Method of determining the mean microfibril angle of wood over a wide range by the improved Cave’s method. Mokuzai Gakkaishi 39:375–381

    Google Scholar 

  11. Hafrén J, Fujino T, Itoh T (1999) Changes in cell wall architecture of differentiating tracheids of Pinus thunbergiii during lignification. Plant Cell Physiol 40:532–541

    Article  Google Scholar 

  12. Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  Google Scholar 

  13. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  14. Kataoka Y, Kondo T (1996) Changing cellulose crystalline structure in forming wood cell walls. Macromolecules 29:6356–6358

    Article  CAS  Google Scholar 

  15. Herth W (1983) Arrays of plasma-membrane “grosettes” involved in cellulose microfibril formation of Spyrogyra. Planta 159:347–356

    Article  CAS  PubMed  Google Scholar 

  16. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    Article  CAS  PubMed  Google Scholar 

  17. Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50

    Article  CAS  PubMed  Google Scholar 

  18. Xu P, Donaldson LA, Gergely ZR, Staehelin A (2007) Dual axis electron tomography: a new approach for investigating the special organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116

    Article  CAS  Google Scholar 

  19. Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscope shows the Iα crystal phase at near-atomic resolution. Biophys J 79:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Timell TE (1960) Studies on Ginkgo biloba L. 1. General characteristics and chemical composition. Sven Papperstidn 63:652–657

    CAS  Google Scholar 

  21. Mian J, Timell TE (1960) Studies on Ginkgo biloba L. 2. The constitution of an arabino-4-O-methyl-glucurono-xylan from the wood. Sven Papperstidn 63:769–774

    CAS  Google Scholar 

  22. Timell TE (1961) Isolation of galactoglucomannans from the wood of gymnosperms. TAPPI 44:88–96

    CAS  Google Scholar 

  23. Yoshida M, Hosoo Y, Okuyama T (2000) Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period. Holzforschung 54:469–473

    CAS  Google Scholar 

  24. Hosoo Y, Imai T, Yoshida M (2006) Diurnal differences in the supply of glucomannanns and xylans in inner-most surface of cell walls at various developmental stages from cambium to mature xylem in Cryptomeria japonica. Protoplasma 229:11–19

    Article  CAS  PubMed  Google Scholar 

  25. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  26. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  27. Awano T, Takabe Y, Fujita M (2002) Xylan deposition on secondary wall of Fagus crenata fiber. Protoplasma 219:106–115

    Article  CAS  PubMed  Google Scholar 

  28. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate crosslink in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    Article  CAS  Google Scholar 

  29. Ralph J, Hatfield RD, Grabber JH, Jung H-JG, Quideau S, Helm RF (1998) Cell wall cross-linking in grasses by ferulates and diferulates. In: Lewis NG, Sarkanen S (eds) ACS Symposium Series 697, Lignin and lignan biosynthesis. American Chemical Society, Washington DC, pp 209–236

  30. Ramiah MV, Goring DAI (1965) The thermal expansion of cellulose, hemicellulose, and lignin. J Polym Sci Part C 11:27–48

    Article  Google Scholar 

  31. Terashima N, Yoshida M (2006) Ultrastructure of lignified plant cell wall observed by field-emission scanning electron microscopy. Observations on periodate lignin prepared from Ginkgo biloba. Cellulose Chem Technol 40:727–733

    CAS  Google Scholar 

  32. Atalla RH, Agarwal UP (1986) Raman microprobe evidence for lignin orientation in the cell wall of native woody tissue. Science 227:636–638

    Article  Google Scholar 

  33. Agarwal UP, Atalla RH (1986) In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P. Planta 169:325–332

    Article  CAS  PubMed  Google Scholar 

  34. Terashima N, Attala RH (1995) Formation and structure of plant cell wall - factors controlling lignin structure during its formation. Proceedings of the 8th International Symposium on Wood and Pulping Chemistry, Helsinki. Finland, vol 1, pp 69–76

    CAS  Google Scholar 

  35. Akiyama T, Ralph J (2008) Characteristics in 1H- and 13C-NMR chemical shifts of non-phenolic dibenzodioxocin model compounds as branch-points in lignin. Proceedings of 53rd Lignin Symposium, Tokyo, pp 84–87

  36. Kukkola E, Koutaniemi S, Pollanen E, Gustafson M, Karuhnen P, Lundell TK, Saranpää P, Kilpäinen I, Teeri TH, Fagerstedt KV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500

    Article  CAS  PubMed  Google Scholar 

  37. Kukkola E, Saranpää P, Fagerstedt K (2008) Juvenile and compressed wood cell walls layers differ in lignin structure in Norway spruce and Scots pine. IAWA J 29:47–54

    Article  Google Scholar 

  38. Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terashima, N., Kitano, K., Kojima, M. et al. Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55, 409–416 (2009). https://doi.org/10.1007/s10086-009-1049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1049-x

Key words