Skip to main content

Official Journal of the Japan Wood Research Society

  • Published:

Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber

Abstract

Illegal logging is a major cause of worldwide deforestation, and demands for scientific methods to identify the geographic origin of timber are increasing. “Dendroprovenancing” is one such method, in which the origin of unknown wood is estimated by calculating correlations of the ring-width series of the unknown wood with reference trees of known geographic origins. We applied the dendroprovenancing method to carbon isotope network data of pinyon pines (Pinus edulis and Pinus monophylla) from the southwestern United States to test the efficacy of using a carbon isotope time series for provenancing wood. First, we calculated correlations (t values) between test trees temporarily assumed to be of unknown origin and reference trees from 13 surrounding sites. Then, we plotted the t values on a map. When provenancing was successful, the tested trees showed the strongest correlation with reference trees from sites close to the actual origins of the test trees, and the correlations decreased with the distance between the original sites of test and reference trees. This conical distribution of t values enabled provenancing of wood with precision of 114–304 km. Although isotope measurement is more expensive and laborious than ring-width measurement, our tests of provenancing pinyon pines in the southwestern United States showed a higher success rate with carbon isotopes.

References

  1. Intergovernmental Panel on Climate Change (2007) Coupling between changes in the climate system and biogeochemistry. In: IPCC Fourth Assessment Report. Working group I report: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  2. World Bank (2006) Formulation and implementation of national action plans to combat illegal logging and other forest crime. Results of ENA-FLEG. In: World Bank Technical Paper. World Bank, Washington, DC

    Google Scholar 

  3. Sheingauz A (2004) Overview of the forest sector in the Russian Far East: production, industry and illegal logging. In: Working paper no. 2: forest trends. Asia Pacific Partners, Washington, DC

    Google Scholar 

  4. Contreras-Hermosilla A, Doornbosch A, Lodge M (2007) The economics of illegal logging and associated trade. In: Report no. SG/SD/RT(2007)1. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  5. Ohyama M, Baba K, Itoh T (2000) Wood identification of Japanese Cyclobalanopsis species (Fagaceae) based on DNA polymorphism of the intergenic spacer between trn T and trn L 5′ exon. J Wood Sci 47:81–86

    Article  Google Scholar 

  6. Deguilloux MF, Pemonge MH, Bertel L, Kremer A, Petit RJ (2003) Checking the geographical origin of oak wood: molecular and statistical tools. Mol Ecol 12:1629–1636

    Article  CAS  PubMed  Google Scholar 

  7. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographic origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci Technol 16:555–567

    CAS  Google Scholar 

  8. English NB, Betancourt JL, Dean JS, Quade J (2001) Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proc Natl Acad Sci U S A 98:11891–11896

    Article  CAS  PubMed  Google Scholar 

  9. Kagawa A, Aoki T, Okada N, Katayama Y (2002) Tree-ring strontium-90 and cesium-137 as potential indicators of radioactive pollution. J Environ Qual 31:2001–2007

    Article  CAS  PubMed  Google Scholar 

  10. Kagawa A, Kuroda K, Abe H, Fujii T, Itoh Y (2007) Stable isotopes and inorganic elements as potential indicators of geographic origin of Southeast Asian timber. In: Fujii T (ed) Proceedings of the international symposium on development of improved methods to identify Shorea species wood and its origin. Forestry and Forest Products Research Institute, Tsukuba, pp 39–44

    Google Scholar 

  11. Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  12. Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  13. Noda M (1996) Analysis of time-series variation of tree-ring width (in Japanese). Res Bull Hokkaido Univ For 53:97–146

    Google Scholar 

  14. Eckstein D, Brongers JA, Bauch J (1975) Tree-ring research in the Netherlands. Tree-Ring Bull 35:1–13

    Google Scholar 

  15. Eckstein D, Wazny T, Bauch J, Klein P (1986) New evidence for the dendrochronological dating of Netherlandish paintings. Nature (Lond) 320:465–466

    Article  Google Scholar 

  16. Haneca K, Wazny T, Acker JV, Beeckman H (2005) Provenancing Baltic timber from art historical objects: success and limitations. J Archaeol Sci 32:261–271

    Article  Google Scholar 

  17. Wazny T (2002) Baltic timber in Western Europe: an exciting dendrochronological question. Dendrochronologia 20:313–320

    Article  Google Scholar 

  18. Leavitt SW (1993) Environmental information from 13C/12C ratios in wood. In: Swart PK (ed) Climate change in continental isotopic records. Geophysical Monograph 78. American Geophysical Union, Washington, DC, pp 325–331

    Google Scholar 

  19. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  20. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  21. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochem Cosmochim Acta 64:21–35

    Article  CAS  Google Scholar 

  22. Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochem Cosmochim Acta 68:3295–3305

    Article  CAS  Google Scholar 

  23. Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316

    Article  CAS  Google Scholar 

  24. Förstel H (2007) The natural fingerprint of stable isotopes: use of IRMS to test food authenticity. Anal Bioanal Chem 388:541–544

    Article  PubMed  CAS  Google Scholar 

  25. Martin GJ, Guillou C, Martin ML, Cabanis MT, Tep Y, Aerny J (1988) Natural factors of isotope fractionation and the characterization of wines. J Agric Food Chem 36:316–322

    Article  CAS  Google Scholar 

  26. Robards K, Antolovich M (1995) Methods for assessing the authenticity of orange juice. A review. Analyst 120:1–28

    CAS  Google Scholar 

  27. Suzuki Y, Chikaraishi Y, Ogawa NO, Okoshi N, Korenaga T (2008) Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem 109:470–475

    Article  CAS  Google Scholar 

  28. Ehlreinger JR, Casale JF, Lott MJ, Ford VL (2000) Tracing the geographic origin of cocaine. Nature (Lond) 408:311–312

    Article  CAS  Google Scholar 

  29. Barbour MM (2008) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94

    Article  Google Scholar 

  30. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  31. Robertson I, Switsur VR, Carter AHC, Barker AC, Waterhouse JS, Briffa KR, Jones PD (1997) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19516

    Article  Google Scholar 

  32. Kagawa A, Naito D, Sugimoto A, Maximov TC (2003) Effects of spatial and temporal variability in soil moisture on widths and δ 13C values of eastern Siberian tree rings. J Geophys Res 108:1–8

    Google Scholar 

  33. Roden JS (2008) Cross-dating of tree ring δ 18O and δ 13C time series. Chem Geol 252:72–79

    Article  CAS  Google Scholar 

  34. Leavitt SW, Long A, Dean JS (1985) Tree-ring dating through pattern-matching of stable-carbon isotope time series. Tree-Ring Bull 45:1–10

    Google Scholar 

  35. Leavitt SW, Long A (1989) The atmospheric δ 13C records as derived from 56 pinyon trees at 14 sites in the southwestern United States. Radiocarbon 31:469–474

    Google Scholar 

  36. Treydte K, Frank D, Esper J, Andreu L, Bednarz Z, Berninger F, Boettger T, D’Alessandro CM, Etien N, Filot M, Grabner M, Guillemin MT, Gutierrez E, Haupt M, Helle G, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Saurer M, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M, Schleser GH (2007) Signal strength and climate calibration of a European tree-ring isotope network. Geophys Res Lett 34:L24302

    Article  Google Scholar 

  37. Leavitt SW, Chase TN, Rajagopalan B, Lee E, Lawrence PJ, Woodhouse CA (2007) Southwestern U.S. drought maps from pinyon tree-ring carbon isotopes. EOS Trans Am Geophys Union 88:39–40

    Article  Google Scholar 

  38. Leavitt SW, Long A (1985) The global biosphere as net CO2 source or sink: evidence from carbon isotopes in tree rings. In: Caldwell DE, Brierly JA, Brierly CL (ed) Planetary ecology. Van Nostrand Reinhold, New York, pp 89–99

    Google Scholar 

  39. Leavitt SW, Long A (1988) Stable carbon isotope chronologies from trees in the southwestern United States. Global Biogeochem Cycles 2:189–198

    Article  CAS  Google Scholar 

  40. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ 13C in atmospheric CO2. Tellus B 51:170–193

    Article  Google Scholar 

  41. Hollstein E (1980) Mitteleuropäische Eichenchronologie, Trierer dendrochronologische Forschungen zur Archäologie und Kunstgeschichte. In: Trierer Grabungen und Forschungen, Rheinisches Landesmuseum Trier, 11. Verlag Phillipp von Zabern, Mainz am Rhein, p 273

    Google Scholar 

  42. Saurer M, Siegenthaler U, Schweingruber F (1995) The climate carbon isotope relationship in tree rings and the significance of site conditions. Tellus B 47:320–330

    Article  Google Scholar 

  43. Loader NJ, Switsur VR, Field EM (1995) High resolution stable isotope analysis of tree rings: implications of “microdendrochronology” for palaeoenvironmental research. Holocene 5:457–460

    Article  Google Scholar 

  44. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Clim 23:201–213

    Article  Google Scholar 

  45. Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature (Lond) 311:145–147

    Article  CAS  Google Scholar 

  46. Doesken NJ, Pielke RA, Bliss OAP (2003) Climate of Colorado. Climatography of the United States, no. 60. National Climatic Data Center, Asheville, NC

    Google Scholar 

  47. Kirdyanov AV, Treydte KS, Nikolaev A, Helle G, Schleser GH (2008) Climate signals in tree-ring width, density and δ 13C from larches in Eastern Siberia (Russia). Chem Geol 252:31–41

    Article  CAS  Google Scholar 

  48. Leavitt SW (1993) Seasonal 13C/12C changes in tree rings: species and site coherence, and a possible drought influence. Can J For Res 23:210–218

    Article  CAS  Google Scholar 

  49. Roden JS, Johnstone JA, Dawson TE (2009) Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). Holocene 19:189–197

    Article  Google Scholar 

  50. Kagawa A, Sugimoto A, Yamashita K, Abe H (2005) Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant Cell Environ 28:906–915

    Article  CAS  Google Scholar 

  51. Nakatsuka T, Ohnishi K, Hara T, Sumida A, Mitsuishi D, Kurita N, Uemura S (2004) Oxygen and carbon isotopic ratios of tree-ring cellulose in a conifer-hardwood mixed forest in northern Japan. Geochem J 38:77–88

    CAS  Google Scholar 

  52. Schulze B, Wirth C, Linke P, Brand WA, Kuhlmann I, Horna V, Schulze ED (2004) Laser ablation-combustion-GC-IRMS: a new method for online analysis of intra-annual variation of δ 13C in tree rings. Tree Physiol 24:1193–1201

    CAS  PubMed  Google Scholar 

  53. Araya A (2003) Present state of decrease of forest area, illegal logging and illegal timber export in Indonesia. Annual Report of Japan Federation of Wood-industry Associations, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, A., Leavitt, S.W. Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber. J Wood Sci 56, 175–183 (2010). https://doi.org/10.1007/s10086-009-1085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1085-6

Key words