Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Pyrolysis reactions of Japanese cedar and Japanese beech woods in a closed ampoule reactor

Abstract

The chemical structures of hemicellulose and lignin are different for two distinct types of wood, i.e., softwood and hardwood. Such differences are expected to affect pyrolysis behavior. In this article, the differences are discussed for Japanese cedar wood (a softwood) and Japanese beech wood (a hardwood) pyrolyzed in a closed ampoule reactor (N2/600°C/40–600 s). Oven-dried samples were used to eliminate the influence of initial water. Demineralized samples (prepared by acid washing) were also used to determine the influence of the minerals contained in the wood samples. As a result, some features were disclosed for secondary char (coke) formation, char reactivity, tar formation, and subsequent decomposition.

References

  1. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653

    Article  CAS  Google Scholar 

  2. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis process for biomass. Renewable Sustainable Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  3. Timell TE (1965) Wood hemicelluloses: part II. Adv Carbohydr Chem 19:409–483

    Google Scholar 

  4. Nakano J, Higuchi T, Sumimoto T, Ishizu A (1983) Mokuzai kagakuk (in Japanese). Uni Publishing, Tokyo, pp 145–227

    Google Scholar 

  5. Adler E (1977) Lignin chemistry: past, present and future. Wood Sci Technol 11:169–218.

    Article  CAS  Google Scholar 

  6. Grønli MG, Varhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208.

    Article  CAS  Google Scholar 

  7. Di Blasi C, Branca C, Santoro A, Bermudez RAP (2001) Weight loss dynamics of wood chips under fast radiative heating. J Anal Appl Pyrol 57:77–90

    Article  Google Scholar 

  8. Di Blasi C, Branca C, Santoro A, Hernandez EG (2001) Pyrolytic behavior and products of some wood varieties. Combust Flame 124:165–177.

    Article  Google Scholar 

  9. Muller-Hagedorn M, Bockorn H, Krebs L, Muller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68/69:231–249

    Article  CAS  Google Scholar 

  10. Pan WP, Richards GN (1989) Influence of metal ions on volatile products of pyrolysis of wood. J Anal Appl Pyrol 16:117–126

    Article  CAS  Google Scholar 

  11. Branca C, Giudicianni P, Di Blasi C (2003) GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind Eng Chem Res 42:3190–3202

    Article  CAS  Google Scholar 

  12. Sipilä K, Kuoppala E, Fagernas L, Oasmaa A (1998) Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14:103–113

    Article  Google Scholar 

  13. Alén R, Kuoppala E, Oesch P (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrol 36:137–148

    Article  Google Scholar 

  14. Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrol 78:328–336

    Article  CAS  Google Scholar 

  15. Šimkovic I, Varhegyi G, Antal MJ (1988) Thermogravimetric/mass spectrometric characterization of the thermal decomposition of (4-O-methyl-d-glucorono)-d-xylan. J Appl Polym Sci 36:721–728

    Article  Google Scholar 

  16. Ralph J, Hatfield RD (1991) Pyrolysis.GC.MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  17. Pouwels AD, Tom A, Eijkel GB, Boon JJ (1987) Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrol 11:417–436

    Article  CAS  Google Scholar 

  18. Pindoria RV, Lim J-Y, Hawkes JE, Lazaro M-J, Herod AA, Kandiyoti R (1997) Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood waste: effect of H2 pressure and sample configuration. Fuel 76:1013–1023

    Article  CAS  Google Scholar 

  19. Kawamoto H, Horigoshi S, Saka S (2007) Pyrolysis reactions of various lignin model dimers. J Wood Sci 53:168–174

    Article  CAS  Google Scholar 

  20. Nakamura T, Kawamoto H, Saka S (2007) Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature. J Wood Chem Technol 27:121–133

    Article  CAS  Google Scholar 

  21. Kawamoto H, Nakamura T, Saka S (2008) Pyrolytic cleavage mechanisms of lignin-ether linkages: a study on p-substituted dimers and trimers. Holzforschung 62:50–56

    Article  CAS  Google Scholar 

  22. Kawamoto H, Ryoritani M, Saka S (2008) Different pyrolytic cleavage mechanisms of β-ether bond depending on the side-chain structure of lignin dimers. J Anal Appl Pyrol 81:88–94

    Article  CAS  Google Scholar 

  23. Nakamura T, Kawamoto H, Saka S (2008) Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimers. J Anal Appl Pyrol 81:173–182

    Article  CAS  Google Scholar 

  24. Watanabe T, Kawamoto H, Saka S (2009) Radical chain reactions in pyrolytic cleavage of the ether linkages of lignin model dimers and a trimer. Holzforschung 63:424–430

    Article  CAS  Google Scholar 

  25. Di Blasi C (2009) Combustion and gasification rates of lignocellulosic chars. Prog Energ Combust Sci 35:121–140

    Article  CAS  Google Scholar 

  26. DeGroot WF, Shafizadeh F (1984) Kinetics of gasification of douglas fir and cottonwood chars by carbon dioxide. Fuel 63:210–216

    Article  CAS  Google Scholar 

  27. Boroson ML, Howard JB, Longwell JP, Peters WA (1989) Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE J 35:120–128

    Article  CAS  Google Scholar 

  28. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1:123–137

    Article  CAS  Google Scholar 

  29. Boroson ML, Howard JB, Longwell JP, Peters WA (1989) Heterogenous cracking of wood pyrolysis over fresh wood char surfaces. Energy Fuel 3:735–740

    Article  CAS  Google Scholar 

  30. Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842

    Article  CAS  Google Scholar 

  31. Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81:843–853

    Article  CAS  Google Scholar 

  32. Antal MJ Jr (1983) Effects of reactors severity on the gas-phase pyrolysis of cellulose-derived and kraft lignin-derived volatile matter. Ind Eng Chem Prod Res Dev 22:366–375

    Article  CAS  Google Scholar 

  33. Rath J, Staudinger G (2001) Cracking reactions of tar from pyrolysis of spruce wood. Fuel 80:1379–1389

    Article  CAS  Google Scholar 

  34. Hosoya T, Kawamoto H, Saka S (2008) Secondary reactions of lignin-derived primary tar components. J Anal Appl Pyrol 83:78–87

    Article  CAS  Google Scholar 

  35. Hosoya T, Kawamoto H, Saka S (2008) Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases. J Anal Appl Pyrol 83:64–70

    Article  CAS  Google Scholar 

  36. Hosoya T, Kawamoto H, Saka S (2009) Role of methoxyl group in char formation from lignin-related compounds. J Anal Appl Pyrol 84:79–83

    Article  CAS  Google Scholar 

  37. Friderichsen AV, Shin EJ, Evans RJ, Nimlos MR, Dayton DC, Ellison GB (2001) The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle. Fuel 80:1747–1755

    Article  CAS  Google Scholar 

  38. Shin EJ, Hajaligol MR, Rasouli F (2004) Heterogenous cracking of catechol under partially oxidative conditions. Fuel 83:1445–1453

    Article  CAS  Google Scholar 

  39. Hosoya T, Kawamoto H, Saka S (2008) Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor. J Anal Appl Pyrol 83:71–77

    Article  CAS  Google Scholar 

  40. Hosoya T, Kawamoto H, Saka S (2009) Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products. J Anal Appl Pyrol 85:237–246

    Article  CAS  Google Scholar 

  41. Migita N, Yonezawa Y, Kondo T (1968) Wood chemistry (in Japanese). Kyoritsu Shuppan, Tokyo

    Google Scholar 

  42. Lima CF, Barbosa LCA, Marcelo CR, Silvério FO, Colodette JL (2008) Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ratio in eucalptus spp. lignin. Bioresources 3:701–712

    CAS  Google Scholar 

  43. Hosoya T, Kawamoto H, Saka S (2006) Oximation-trimethylsilylation method for analysis of wood pyrolysate. J Anal Appl Pyrol 77:121–126

    Article  CAS  Google Scholar 

  44. Güllü D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manag 42:1349–1356

    Article  Google Scholar 

  45. DeGroot WF (1985) Preliminary investigation of the association of inorganic cations with carboxylic acid groups in wood. Carbohydr Res 142:172–178

    Article  CAS  Google Scholar 

  46. Piskorz J, Radlein D, Scott DS (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrol 16:127–142

    Article  CAS  Google Scholar 

  47. Richards GN (1987) Glycolaldehyde from pyrolysis of cellulose. J Anal Appl Pyrol 10:251–255

    Article  CAS  Google Scholar 

  48. Dorrestijn E, Mulder P (1999) The radical-induced decomposition of 2-methoxyphenol. J Chem Soc Perkin Trans 2:777–780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kawamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmadi, M., Kawamoto, H. & Saka, S. Pyrolysis reactions of Japanese cedar and Japanese beech woods in a closed ampoule reactor. J Wood Sci 56, 319–330 (2010). https://doi.org/10.1007/s10086-009-1097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1097-2

Key words