Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Evaluation of formaldehyde adsorption by bamboo charcoal using a photoacoustic method

Abstract

This study focuses on a novel, multipass, acoustically open photoacoustic detector designed for fast-response high-sensitivity detection of formaldehyde adsorption by bamboo charcoal in an ambient atmosphere. The detection range, estimated from formaldehyde measurements at a wavenumber of around 2805 cm−1, is 0–2.0 parts per million by volume. In this work, photoacoustic (PA) detection with various bamboo charcoals was analyzed at our laboratory for the detection of a photoacoustic signal using a pulsed laser system and the comparative performances of the charcoals were studied. The PA system is applicable to pollution monitoring and detection of hazardous gases in an indoor environment.

References

  1. Meyer B, Hermanns K (1985) Formaldehyde release from pressed wood products: an overview. In: Meyer B, Kottes A, Reinhardt RM (eds) Formaldehyde: analytical chemistry and toxicology. American Chemical Society, Washington, DC, pp 1–16

  2. Myers GE (1983) Formaldehyde emission from particleboard and plywood paneling: measurement, mechanism, and product standards. Forest Prod J 33:27–37

    CAS  Google Scholar 

  3. Park JS, Ikeda K (2006) Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor Air 16: 129–135

    Article  PubMed  CAS  Google Scholar 

  4. Ohmichi K, Komiyama M, Matsuno Y, Takanashi Y, Miyamoto H, Kadota T, Maekawa M, Toyama Y, Tatsugi Y, Kohno T, Ohmichi M, Mori C (2006) Formaldehyde exposure in a gross anatomy laboratory; personal exposure level is higher than indoor concentration. Environ Sci Pollut Res 13:120–124

    Article  CAS  Google Scholar 

  5. WHO (2000) Air quality guidelines for Europe, 2nd edn. World Health Organization Regional Office for Europe, Copenhagen, WHO Regional Publications, European Series No. 91

    Google Scholar 

  6. Fraser MP, Grosjean E, Grosjean D, Rasmussen RA, Cass GR (1996) Air quality model evaluation data for organics. 1: Bulk chemical composition and gas/particle distribution factors. Environ Sci Technol 30:1731–1743

    Article  CAS  Google Scholar 

  7. Kim S, Kim HJ (2005) Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Biores Technol 96:1457–1464

    Article  CAS  Google Scholar 

  8. Fried A, Henry B, Wert B, Sewell S, Drummond JR (1998) Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies. Appl Phys B 67:317–330

    Article  CAS  Google Scholar 

  9. Fried A, Sewell S, Henry B, Wert BP, Gilpin T, Drummond JR (1997) Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde. J Geophys Res 102: 6253–6266

    Article  CAS  Google Scholar 

  10. Miller JH, Bakhirkin YA, Ajtai T, Tittel FK, Hill CJ, Yang RQ (2006) Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser. Appl Phys B 85:391–396

    Article  CAS  Google Scholar 

  11. Kaneko K (1994) Determination of pore size and pore size distribution: adsorbents and catalysts. J Membr Sci 96:59–89

    Article  CAS  Google Scholar 

  12. Krishna R, Taylor R (1986) Multicomponent mass transfer: theory and applications. In: Handbook of heat and mass transfer, vol 2. Gulf, Houston, pp 259–432

    Google Scholar 

  13. Horstjann M, Bakhirkin YA, Kosterev AA, Curl RF, Tittel FK, Wong CM, Hill CJ, Yang RQ (2004) Formaldehyde sensor using interband cascade laser-based quartz-enhanced photoacoustic spectroscopy. Appl Phys B: Lasers Optics 79:799–803

    Article  CAS  Google Scholar 

  14. Angelmahr M, Miklos A, Hess P (2006) Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level. Appl Phys B 85:285–288

    Article  CAS  Google Scholar 

  15. Miklos A, Pei SC, Kung AH (2006) Multipass acoustically open photoacoustic detector for trace gas measurements. Appl Opt 45:2529–2535

    Article  PubMed  Google Scholar 

  16. Gregg GS, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, London, pp 56–86

    Google Scholar 

  17. Gilpin T, Apel EC, Fried A, Sewell S, Wert B, Calvert JG, Genfa Z, Dasgupta P, Harder J, Heikes B, Hopkins B, Westberg H, Kleindienst T, Lee YN, Zhou X, Lonneman W (1997) Intercomparison of six ambient [CH2O] techniques. J Geophys Res 102: 161–188

    Article  Google Scholar 

  18. Rehlel D, Leleux D, Erdelyi M, Tittel F, Fraser M, Friedfeld S (2001) Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN. Appl Phys B 72: 947–952

    Google Scholar 

  19. Ryu Z, Zheng J, Wang M, Zhang B (1999) Characterization of pore size distributions on carbonaceous adsorbents. Carbon 37:1257–1264

    Article  CAS  Google Scholar 

  20. Abe I, Fukuhara T, Maruyama J, Tatsumota H, Iwasaki S (2001) Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon 39:1069–1073

    Article  CAS  Google Scholar 

  21. Kitamura T, Taguchi T, Katayama H (2002) The effects of carbonizing conditions on the specific surface area of charcoal from sugi (Cryptomeria japonica) wood II: the effects of carbonizing temperature and carbon dioxide concentration in carbonizing atmospheres. Mokuzai Gakkaishi 48:272–279

    CAS  Google Scholar 

  22. Kogan LV, Blazhin YM, Gorodnikov OSK, Kafarov VV (1977) Liquid-vapor equilibrium in the system formaldehyde-water. Zhur Prikl Khim 50:2682–2687

    CAS  Google Scholar 

  23. Boonamnuayvitaya V, Saeung S, Tanthapanichakoon W (2005) Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separ Purif Technol 42:159–168

    Article  CAS  Google Scholar 

  24. Asada T, Ishihara S, Yamane T, Toba A, Yamada A. Oikawa K (2002) Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci 48:473–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Way Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, W., Lan, H.F. & Huang, Y.F. Evaluation of formaldehyde adsorption by bamboo charcoal using a photoacoustic method. J Wood Sci 56, 345–349 (2010). https://doi.org/10.1007/s10086-009-1113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-009-1113-6

Key words