Skip to main content

Official Journal of the Japan Wood Research Society

  • Note
  • Published:

Antihyperglycemic effects of Japanese maple Acer amoenum leaf extract and its constituent corilagin

Abstract

The antihyperglycemic effects of the leaves of Acer amoenum and purification and identification of an active compound were investigated. In screening experiments for α-glucosidase inhibitory activity, methanolic extracts of A. amoenum leaves showed potent inhibitory action. This extract showed antihyperglycemic effects in sucrose-loaded mice. Fractionation of the crude extract gave the active compound corilagin [β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose] by spectroscopic analysis. This is the first report about the possibility of novel utilization of the Japanese maple tree as a source of compounds for prevention or treatment of diabetes mellitus.

References

  1. Brend S, Diethelim T (2009) Atherogenesis and atherothrombosis — focus on diabetes mellitus. Best Pract Res Clin Endocrinol Metabol 23:291–303

    Article  Google Scholar 

  2. Foreyt PJ (2005) Need for lifestyle intervention: How to begin. Am J Cardiol 96:11–14

    Article  Google Scholar 

  3. Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K (2009) Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 373:1607–1614

    Article  CAS  PubMed  Google Scholar 

  4. Li WL, Zheng HC, Buruku J, De ND (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21

    Article  CAS  PubMed  Google Scholar 

  5. Zareba G, Serradell N, Castaner R, Davis SL, Prous J, Mealy N (2005) Phytotherapies for diabetes. Drugs Future 30:1253–1282

    Article  Google Scholar 

  6. Kim JH, Lee BC, Sim GS, Lee DL, Yun YP, Pyo HB (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28:195–202

    Article  CAS  PubMed  Google Scholar 

  7. Aritomi M (1963) Chemical constituents in Aceraceous plants I. Flavonoid constituents in the leaves of Acer palmatum Thumberg (in Japanese). J Pharm Soc Jpn 83:737–740

    CAS  Google Scholar 

  8. Ji SB, Saito N, Yokoi M, Shigihara A, Honda T (1992) Galloylcyanidin glycosides from Acer. Phytochemicals 31:655–657

    Article  CAS  Google Scholar 

  9. Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 71:18–25

    Article  Google Scholar 

  10. Wei WX, Pan YJ, Zhang H, Lin CW, Wei TY (2004) Two new compounds from Phyllanthus niruri. Chem Nat Comp 40:460–464

    Article  CAS  Google Scholar 

  11. Gao H, Huang YN, Xu PY, Kawabata J (2007) Inhibitory effect of α-glucosidase by fruits of Terminalia chebula Retz. Food Chem 105:628–634

    Article  CAS  Google Scholar 

  12. Gutierrez RM, Mitchell S, Solis RV (2008) Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117:1–27

    Article  CAS  PubMed  Google Scholar 

  13. Sakaguchi K, Kasuga M (2007) Adverse effect of alpha-glucosidase inhibitors (in Japanese). Nippon Rinsho 65:183–187

    PubMed  Google Scholar 

  14. Sager EP, Hutchinson TC, Croley TR (2005) Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution. Environ Monit Assess 105:419–430

    Article  CAS  PubMed  Google Scholar 

  15. Aritomi M (1964) Chemical constituents in Aceraceous plants. II. Flavonoid constituents in leaves of Acer carpinifolium Siebold et Zuccarini, A. diabolicum Blume, and A. negundo. J Pharm Soc Jpn 84:360–362

    CAS  Google Scholar 

  16. Ji SB, Yokoi M, Saito N, Mao LS (1992) Distribution of anthocyanins in Aceraceae leaves. Biochem System Ecol 20:771–781

    Article  CAS  Google Scholar 

  17. Miwa I, Okuda J, Horie T, Nakayama M (1986) Inhibition of intestinal α-glucosidase and sugar absorption by flavones. Chem Pharm Bull 34:838–844

    CAS  PubMed  Google Scholar 

  18. Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K (2008) Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 62: 349–353

    Article  CAS  PubMed  Google Scholar 

  19. Ma X, Wu L, Ito Y, Tian W (2005) Application of preparative highspeed counter-current chromatography for separation of methyl gallate from Acer truncatum Bunge. J Chromatogr A 1076: 212–215

    Article  CAS  PubMed  Google Scholar 

  20. Abou-Zaid MM, Nozzolillo C, Tonon A, Coppens M, Lombardo A (2008) High-performance liquid chromatography characterization and identification of antioxidant polyphenols in maple syrup. Pharm Biol 46:117–125

    Article  CAS  Google Scholar 

  21. Kim HJ, Woo ER, Shin CG, Park HK (1998) A new flavonol glucoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 61:145–148

    Article  CAS  PubMed  Google Scholar 

  22. Gamberucci A, Konta L, Colucci A, Gunti J, Magyar EJ, Mandl J, Banhegyi G, Benedetti A, Csala M (2006) Green tea flavonoids inhibit glucosidase II. Biol Pharmacol 72:640–646

    Article  CAS  Google Scholar 

  23. Toda M, Kawabata J, Kasai T (2004) Inhibitory effects of ellagi- and gallotannins on rat intestinal α-glucosidase complex. Biosci Biotechnol Biochem 65:542–547

    Article  Google Scholar 

  24. Qiang H, Bi S, Kai Y (2006) Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem 95: 250–254

    Article  Google Scholar 

  25. Shimada T (2006) Salivary proteins as a defense against dietary tannins. J Chem Ecol 32:1149–1163

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y (2007) Antioxidant and hepatoprotective actions of medicinal herb Terminalia catappa L. from Okinawa island and its tannin corilagin. Phytomedicine 14:755–762

    Article  CAS  PubMed  Google Scholar 

  27. Prasad NK, Yang B, Zhao M, Wei X, Jiang Y, Chen F (2009) High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Sep Pur Tech 70:41–45

    Article  CAS  Google Scholar 

  28. Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H (2001) New TNF-α releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull 24:1145–1148

    Article  CAS  PubMed  Google Scholar 

  29. Zao L, Zhang SL, Tao JY, Pang R, Jin F, Guo YJ, Dong JH, Ye P, Zhao HY, Zheng GH (2008) Preliminary exploration on antiinflammatory mechanism of corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in vitro. Int Immunopharmacol 8:1059–1064

    Article  Google Scholar 

  30. Cheng JT, Lin TC, Hsu FL (1995) Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol 73:1425–1429

    CAS  PubMed  Google Scholar 

  31. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T (2004) Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48:67–73

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Koyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honma, A., Koyama, T. & Yazawa, K. Antihyperglycemic effects of Japanese maple Acer amoenum leaf extract and its constituent corilagin. J Wood Sci 56, 507–512 (2010). https://doi.org/10.1007/s10086-010-1130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-010-1130-5

Key words