Skip to main content

Official Journal of the Japan Wood Research Society

Modeling of sapwood and heartwood delignification kinetics of Eucalyptus globulus using consecutive and simultaneous approaches

Abstract

Eucalyptus globulus sapwood and heartwood were delignified at 130°, 150°, or 170°C by kraft pulping. Pulp yields of heartwood were lower than those of sapwood (46.5% vs. 50.4% at 170°C). Delignification was modeled using consecutive and simultaneous kinetic models. The modeling was similar for heartwood and sapwood, and either approach could be used, with both yielding good correlations between experimental and model data. The consecutive model identified two delignification phases with similar reaction rates and activation energies for heartwood and sapwood at 150° and 170°C. At 130°C only one phase was identified. Three reactive types of lignin fractions were identified using the simultaneous model, without differences between heartwood and sapwood. Their reaction rates were 0.152, 0.138, and 0.003 min−1 at 170°C, and the activation energies were 132, 119, and 102 kJ.mol−1. The presence of heartwood did not influence the kinetic development of delignification. The negative impact of heartwood in pulping is related to the higher content of extractives (9.8% vs. 3.9% in heartwood and sapwood) and to their influence on the process, namely in the heating-totemperature phase when a substantial mass loss occurs (30% vs. 20% for heartwood and sapwood).

References

  1. Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. CRC, Blackwell, Oxford, pp 53–83

    Google Scholar 

  2. Miranda I, Gominho J, Lourenço A, Pereira H (2006) The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Can J For Res 36:2675–2683

    Article  Google Scholar 

  3. Miranda I, Gominho J, Lourenço A, Pereira H (2007) Heartwood, extractives and pulp yield of three Eucalyptus globulus clones grown in two sites. APPITA J 60(6):485–488, 500

    CAS  Google Scholar 

  4. Kleppe PJ (1970) Kraft pulping. Tappi J 53(1):35–47

    CAS  Google Scholar 

  5. Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266

    Article  CAS  Google Scholar 

  6. Oliet M, Rodríguez F, Santos A, Gilarranz MA, Garcia-Ochoa F, Tijero J (2000) Organosolv delignification of Eucalyptus globulus: kinetic study of autocatalyzed ethanol pulping. Ind Eng Chem Res 39:34–39

    Article  CAS  Google Scholar 

  7. Santos A, Rodríguez F, Gilarranz MA, Moreno D, García-Ochoa F (1997) Kinetic modeling of kraft delignification of Eucalyptus globulus. Ind Eng Chem Res 36:4114–4125

    Article  CAS  Google Scholar 

  8. Pérez JM, Gillarranz MA, Rodríguez F, Oliet M, Garcia J (2000) Estudio sobre la cinética de la deslignificación en la fase residual de las cocciones kraft. In: Congreso Iberoamericano de Investigación en Celulosa y Papel (Poster), 19/10, 2000, Misiones, Argentina, http://ciadicyp.unam.edu.ar/trabajos/trabajos/pulpa_y_pulpados/Rodriguez-100-UCMEsp.pdf. Accessed June 2, 2010

    Google Scholar 

  9. Gilarranz MA, Santos A, García J, Oliet M, Rodríguez F (2002) Kinetics, catalysis and reaction engineering. Ind Eng Chem Res 41:1955–1959

    Article  CAS  Google Scholar 

  10. Miranda I, Pereira H (2002) Kinetics of ASAM and kraft pulping of Eucalyptus wood (Eucalyptus globulus). Holzforschung 56:85–90

    Article  CAS  Google Scholar 

  11. Pereira H, Oliveira MF, Miranda I (1986) Kinetics of ethanol-water pulping and pulp properties of Eucalyptus globulus Labill. APPITA J 39:455–458

    CAS  Google Scholar 

  12. Gilarranz MA, Rodríguez F, Santos A, Oliet M, Garcia-Ochoa F, Tijero J (1999) Kinetics of Eucalyptus globulus delignification in a methanol-water medium. Ind Eng Chem Res 38:3324–3332

    Article  CAS  Google Scholar 

  13. Labidi PA, Pla F (1992) Délignification en milieu alcalin de bois feullus à l’aide d’un réacteur à lit fixe et à faible temps de passage. Holzforschung 46:155–161

    Article  CAS  Google Scholar 

  14. Sixta H, Rutkowska EW (2007) Comprehensive kinetic study on kraft pulping of Eucalyptus globulus. Part 1. Delignification and degradation of carbohydrates. O Papel 8:54–67

    Google Scholar 

  15. Shatalov A, Pereira H (2005) Kinetics of organosolv delignification of fibre crop Arundo donax L. Ind Crop Prod 21:203–210

    Article  CAS  Google Scholar 

  16. Bogren J, Brelid H, Theliander H (2008) Effect of pulping conditions on the rates of formation and degradation of hexenuronic acid in Scots pine. J Pulp Paper Sci 34:23–29

    CAS  Google Scholar 

  17. Garland CP, James FC, Nelson PJ, Wallis AFA (1987) A study of the delignification of E. diversicolor wood during soda pulping. APPITA J 40:116–120

    CAS  Google Scholar 

  18. Madeira MV, Fabião A, Pereira JS, Araújo MC, Ribeiro C (2002) Changes in carbon stocks in Eucalyptus globulus Labill. Plantations induced by different water and nutrients availability. For Ecol Manag 171:75–85

    Article  Google Scholar 

  19. Gominho J (2003) Variação do cerne no eucalipto e sua influência na qualidade da madeira para produção de pasta para papel. Dissertação de Doutoramento. Universidade Técnica de Lisboa. Instituto Superior de Agronomia, Lisboa, p 264

    Google Scholar 

  20. Wong BM, Deka GC, Roy DN (1995) Bulk delignification kinetics at selected vertical heights within jack pine plus trees. Wood Sci Technol 29:11–18

    Article  CAS  Google Scholar 

  21. Nelson PJ, Gniel GM (1986) Delignification of Eucalyptus regnans wood during soda pulping. APPITA J 39:110–114

    CAS  Google Scholar 

  22. Dang VQ, Nguyen KL (2008) A universal kinetic model for characterisation of the effect of chip thickness on kraft pulping. Bioresour Technol 99:1486–1490

    Article  CAS  PubMed  Google Scholar 

  23. Sjöström E (1981) Wood chemistry. Fundamentals and applications. Academic, London

    Google Scholar 

  24. Simão JPF, Egas APV, Baptista CMS, Carvalho MG, Castro JAA (2005) Evolution of methylglucuronic and hexenuronic acid contents of Eucalyptus globulus pulp during kraft delignification. Ind Eng Chem Res 44:2990–2996

    Article  Google Scholar 

  25. Santiago AS, Neto CP (2008) Impact of kraft process modifications on Eucalyptus globulus pulping performance and polysaccharide retention. Ind Eng Chem Res 47:7433–7440

    Article  CAS  Google Scholar 

  26. Bogren J, Brelid H, Theliander H (2007) Reaction kinetics of softwood kraft delignification - general considerations and experimental data. Nord Pulp Paper Res J 22:177–183

    Article  CAS  Google Scholar 

  27. De Groot B, Van Dam JEG, Van der Zwan RP, van’t Riet K (1994) Simplified kinetic modelling of alkaline delignification of hemp woody core. Holzforschung 48:207–214

    Article  Google Scholar 

  28. Mariani S, Torres M, Fernandez A, Morales E (2005) Effects of Eucalyptus nitens heartwood in kraft pulping. Tappi J 4(2):8–10

    CAS  Google Scholar 

  29. Chiang VL, Puumala RJ, Takeuchi H (1988) Comparison of soft-wood and hardwood kraft pulping. Tappi J 9:173–176

    Google Scholar 

  30. Esteves B, Gominho J, Rodrigues JC, Miranda I, Pereira H (2005) Pulping yield and delignification kinetics of heartwood and sapwood of maritime pine. J Wood Chem Technol 25:217–230

    Article  CAS  Google Scholar 

  31. Schmid R, Sapunov VN (1982) Non-formal kinetics in search for chemical reaction pathways. Monographs in modern chemistry, vol 14. Verlag Chemie, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lourenço.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourenço, A., Gominho, J. & Pereira, H. Modeling of sapwood and heartwood delignification kinetics of Eucalyptus globulus using consecutive and simultaneous approaches. J Wood Sci 57, 20–26 (2011). https://doi.org/10.1007/s10086-010-1137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-010-1137-y

Key words