Skip to main content

Official Journal of the Japan Wood Research Society

Enlargement of individual cellulose microfibrils in transgenic poplars overexpressing xyloglucanase

Abstract

Holocellulose samples prepared from transgenic poplars overexpressing xyloglucanase had crystal widths of 3.2–3.5 nm as a result of the (2 0 0) plane, based on their X-ray diffraction patterns, and crystal widths were greater than those of the wild type (3.0 nm). Cellulose microfibril widths in the holocellulose samples were further determined from transmission electron microscopic (TEM) images of individualized fibrils prepared by 2,2,6,6-tetramethylpiperidine-1-oxy radical-mediated oxidation of the holocelluloses and the successive disintegration of the oxidized products in water. The TEM images also supported the finding that cellulose microfibril widths of transgenic poplars were larger than those of the wild type. The cellulose microfibril widths of transgenic poplars were approximately 6 nm, whereas those of the wild type were about 5 nm. However, such enlargement of cellulose microfibril widths could not be explained by the increased cellulose contents of the transgenic poplars alone.

References

  1. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    CAS  Article  PubMed  Google Scholar 

  2. Taniguchi T, Omiya Y, Kurita M, Tsubomura M, Kondo T, Park YW, Baba K, Hayashi T (2008) Biosafety assessment of transgenic poplars overexpressing xyloglucanase (AaXEG2) prior to field trials. J Wood Sci 54:408–413

    Article  Google Scholar 

  3. Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brummer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar - a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    CAS  Article  PubMed  Google Scholar 

  4. Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893–903

    CAS  Article  PubMed  Google Scholar 

  5. Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106

    CAS  Article  PubMed  Google Scholar 

  6. Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-β-glucanase (cel1). Mol Breed 14:321–330

    Article  Google Scholar 

  7. Hartati, S, Sudarmonowati, E, Park, YW, Kaku, T, Kaida, R, Baba, K, Hayashi, T (2008) Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon. Plant Physiol 147:552–561

    CAS  Article  PubMed  Google Scholar 

  8. Kaida, R, Kaku, T, Baba, K, Oyadomari, M, Watanabe, T, Nishida, K, Kanaya, T, Shani, Z, Shoseyov, O, Hayashi, T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol Plant 2:904–909

    CAS  Article  PubMed  Google Scholar 

  9. Heyn AN (1969) Elementary fibril supermolecular structure of cellulose in soft wood fiber. J Ultrastruc Res 26:52–68

    CAS  Article  Google Scholar 

  10. Fengel D (1978) Fibrillar structure of cellulose from wood. Holzforschung 32:37–44

    CAS  Article  Google Scholar 

  11. Jakob HF, Fengel D, Tschegg SE, Fretzl P (1995) The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    CAS  Article  Google Scholar 

  12. Saito T, Nishiyama Y, Putax JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPOcatalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    CAS  Article  PubMed  Google Scholar 

  13. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  Article  PubMed  Google Scholar 

  14. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    CAS  Article  PubMed  Google Scholar 

  15. Wise LE, Murphy M, Daddieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Tech Assoc Pap 29:210–218

    Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Article  Google Scholar 

  17. Hayashi T (1989) Measuring β-glucan deposition in plant cell walls. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis: plant fibers. Springer-Verlag, Berlin, pp 138–160

    Google Scholar 

  18. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    CAS  Article  PubMed  Google Scholar 

  19. Alexander LE (1979) X-ray diffraction methods in polymer science. Kreiger, New York, p 423

    Google Scholar 

  20. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: Reinvestigation of cellulose IV. Biomacromolecules 5:1385–1391

    CAS  Article  PubMed  Google Scholar 

  21. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    CAS  Article  Google Scholar 

  22. Kaida R, Kaku T, Baba K, Hartati S, Sudarmonowati E, Hayashi T (2009) Enhancement of saccharification by overexpression of poplar cellulase in sengon. J Wood Sci 55:435–440

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, M., Saito, T., Isogai, A. et al. Enlargement of individual cellulose microfibrils in transgenic poplars overexpressing xyloglucanase. J Wood Sci 57, 71–75 (2011). https://doi.org/10.1007/s10086-010-1140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-010-1140-3

Key words

  • Transgenic poplar
  • Xyloglucanase
  • Cellulose fibril
  • TEMPO-mediated oxidation