Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Extraction and decomposition of hiba wood into valuable chemicals using stepwise temperature supercritical carbon dioxide treatment

Abstract

Hiba (Thujopsis dolabrata) wood was treated with supercritical carbon dioxide (scCO2) at stepwise temperature increments from 50° to 400°C continuously so that extractives (dichloromethane-soluble and -insoluble phases) and solid residues were obtained. The yield of extractives from hiba wood increased with increasing extraction temperature. The volatile compounds in the dichloromethane-soluble phase from scCO2 extraction at 50°C contained only terpenoids. However, the volatile compounds in the dichloromethane-soluble phase from scCO2 extraction at 300°C not only contained terpenoids but also phenols, furans, hydrocarbons, and organic acids. The yield of β-thujaplicin, which is a useful compound in hiba wood, increased with increasing extraction temperature from 50°C to 300°C; the optimal conditions for extracting β-thujaplicin were 300°C and 19.61 MPa. Further study of degradated compounds from the cellulosic and lignic materials of hiba wood after stepwise high-temperature scCO2 treatment above 300°C may provide clues to its efficient use.

References

  1. Hayashi Y, Furusato K, Nakamura T (1985) Aomorihiba. In: Hayashi Y (ed) Illustrated trees in color. Hokuryukan, Tokyo, p 801

    Google Scholar 

  2. Okabe T (1990) Hinokitiol (in Japanese). In: Okabe T (ed) The wonder of Aomorihiba. Aomorihiba Kenkyu Kai, Aomori, pp 71–86

    Google Scholar 

  3. DeSimone JM, Tumas W (2003) Supercritical carbon dioxide. In: DeSimone JM, Tumas W (eds) Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, New York, pp 1–288

    Google Scholar 

  4. Schneiderman MA, Sharma AK, Locke D (1987) Determination of anthraquinone in paper and wood using supercritical extraction and high performance liquid chromatography with electrochemical detection. J Chromatogr 409:343–353

    Article  CAS  Google Scholar 

  5. Hing-Bin L, Thomas EP (1992) Supercritical carbon dioxide extraction of resin and fatty acids from sediments at pulp mill sites. J Chromatogr 594:309–315

    Article  Google Scholar 

  6. Ohira T, Terauchi F, Yatagai M (1994) Tropolones extracted from the wood of western red cedar by supercritical carbon dioxide. Holzforshung 48:308–312

    Article  CAS  Google Scholar 

  7. Ohira T, Yatagai M (1994) Extractives from the bark of Abies sachalinensis I: the efficient extraction of cis-abienol using supercritical carbon dioxide. Mokuzai Gakkaishi 40:751–757

    CAS  Google Scholar 

  8. Ohira T, Matsui N, Yatagai M (1999) Camphor containing materials and its extraction method (in Japanese). Japanese Patent Disclosure P1999–255697A

  9. Inoue N, Ohinata H, Matsuzaki T, Yonei Y, Shigematsu H, Kitagawa K, Harada F (1993) Purification method for ferruginol (in Japanese). Japanese Patent Disclosure P1993–294878A

  10. Ohira T, Yatagai M (1993) Extractives of Abies mariesii Masters II. The efficient extraction of maltol using supercritical fluids and its antifungal and plant growth regulation effects. Mokuzai Gakkaishi 39:237–242

    CAS  Google Scholar 

  11. Chen M-K, Shin H-W, Lee H, Liu J-R (1994) Supercritical fluid extraction of taxol and baccatin III from needles of Taxus cuspidata. Biotechnol Tech 8:547–550

    Article  Google Scholar 

  12. Ohira T, Yatagai M, Itoya Y, Nakamura S (1996) Efficient extraction of hinokitiol from the wood of hiba with supercritical carbon dioxide. Mokuzai Gakkaishi 42:1006–1012

    CAS  Google Scholar 

  13. Randolph TW, Clark DS, Blanch HW, Prausniz JM (1988) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 239:387–390

    Article  CAS  PubMed  Google Scholar 

  14. Desimone JM, Guan ZS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257:945–947

    Article  CAS  PubMed  Google Scholar 

  15. Hadida S, Super MS, Beckman EJ, Curran DP (1997) Radical reactions with alkyl and fluoroalkyl (fluorous) tin hydride reagent in supercritical CO2. J Am Chem Soc 119:7406–7407

    Article  CAS  Google Scholar 

  16. Isaacs NS, Keating N (1992) The rates of a Diels-Alder reaction in liquid and supercritical carbon dioxide. J Chem Soc Chem Commun 12:876–877

    Article  Google Scholar 

  17. Mark JB, Feng S, Gross MF, Tumas W (1995) Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc 117:8277–8278

    Article  Google Scholar 

  18. Xu H, Gao Y, Liu X, Zhao J (2008) Effects of supercritical carbon dioxide on volatile formation from Maillard reaction between ribose and cysteine. J Sci Food Agric 88:328–335

    Article  CAS  Google Scholar 

  19. Moyler DA (1993) Extraction of essential oils with carbon dioxide. Flavour Fragr J 8:235–247

    Article  CAS  Google Scholar 

  20. Hoyer GC (1985) Extraction with supercritical fluids: why, how, and so what? Chemtech 7:440–448

    Google Scholar 

  21. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16:637–641

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein IS (1981) Chemicals from biomass: present status. For Prod J 31:63–68

    Google Scholar 

  23. Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured, Carol Stream, pp 53–788

  24. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Palm Sci 19:797–841

    Article  CAS  Google Scholar 

  25. Yarita T (2008) Development of environmental analysis methods using supercritical fluid extraction and supercritical fluid chromatography. Chromatography 29:19–23

    CAS  Google Scholar 

  26. Skaar C (1988) Moisture content. In: Skaar C (ed) Wood-water relations. Springer Verlag, New York, pp 20–35

    Chapter  Google Scholar 

  27. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  CAS  Google Scholar 

  28. Ritter DC, Campbell AG (1991) Supercritical carbon dioxide extraction of southern pine and ponderosa pine. Wood Fiber Sci 23:98–113

    CAS  Google Scholar 

  29. Miller DJ, Hawthorne SB, Clifford AA, Zhu S (1996) Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar. J Chem Eng Data 41:779–786

    Article  CAS  Google Scholar 

  30. Jaffe R, Gong Y, Furton KG (1997) Temperature effects on supercritical carbon dioxide extractions of hydrocarbons from geological samples. J High Resolut Chromatogr 20:586–590

    Article  CAS  Google Scholar 

  31. Salak F, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethylfurfural from d-fructose in supercritical water. Ind Eng Chem Res 45(7):2163–2173

    Article  Google Scholar 

  32. Salak F, Yoshida H (2007) Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxy-methylfurfural, levulinic, and formic acids. Ind Eng Chem Res 46:7703–7710

    Article  Google Scholar 

  33. Ehara K, Saka S, Kawamoto H (2002) Characterization of the lignin-derived products from wood as treated in supercritical water. J Wood Sci 48:320–325

    Article  CAS  Google Scholar 

  34. Yatagai M, Unrinin G, Ohira T (1988) By-products of wood carbonization IV: components of wood vinegars. Mokuzai Gakkaishi 34:184–188

    CAS  Google Scholar 

  35. Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood: gas chromatographic separation and mass spectrometric characterization of monomeric lignin-derived products. Holz als Roh-und Werkstoff 48:281–285

    Article  CAS  Google Scholar 

  36. Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood: a collection of electron-impact (EI) mass spectra of monomeric lignin-derived products. Holz als Roh-und Werkstoff 48:351–354

    Article  CAS  Google Scholar 

  37. Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Ohira.

Additional information

This study was presented in part at the 55th Annual Meeting of the Japan Wood Research Society, Tokyo, April 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohira, T., Edashige, Y., Matsui, N. et al. Extraction and decomposition of hiba wood into valuable chemicals using stepwise temperature supercritical carbon dioxide treatment. J Wood Sci 57, 226–233 (2011). https://doi.org/10.1007/s10086-010-1156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-010-1156-8

Key words