Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin IV: dependence of acidolysis reaction on the type of acid

Abstract

The dependence of the acidolysis reaction of a C6-C3 dimeric nonphenolic β-O-4 type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) propane-1,3-diol (veratrylglycerol-β-guaiacyl ether, VG), on the type of acid applied was examined using three different acids [0.2 mol/l HCl, 0.2 mol/l HBr, and 0.1 mol/l (0.2 N) H2SO4 in 82% aqueous 1,4-dioxane at 85°C]. In the HCl system, the major reaction modes of the corresponding benzyl cation-type intermediate (BC), which is produced by protonation of the α-hydroxyl group of VG and successive release of the water molecule, are the abstraction of the β-proton and hydride transfer from the β-to the α-position. The liberation of formaldehyde from the γ-hydroxymethyl group of BC is the predominant reaction mode in the H2SO4 system. Apparently, an unknown reaction mode or modes is operative in the early stage of the HBr system that causes rapid disappearance of VG accompanied by the quantitative formation of 2-methoxyphenol without affording the common counterpart of a Hibbert’s ketone, 1-hydroxy-3-(3,4-dimethoxyphenyl) propan-2-one. The reaction mode in the HBr system changes with the progress of the reaction and is the same as that in the HCl system after the early stage.

References

  1. Adler E, Pepper JM, Eriksoo E (1957) Action of mineral acid on lignin and model substances of guaiacylglycerol-β-aryl ether type. Ind Eng Chem 49(9):1391–1392

    Article  CAS  Google Scholar 

  2. Lundquist K (1970) Acid degradation of lignin II: Separation and identification of low molecular weight phenols. Acta Chem Scand, 24(3):889–907

    Article  CAS  Google Scholar 

  3. Lundquist K, Ericsson L (1970) Acid degradation of lignin III: Formation of formaldehyde. Acta Chem Scand 24(10):3681–3686

    Article  CAS  Google Scholar 

  4. Lundquist K, Lundgren R (1972) Acid degradation of lignin, part VII: The cleavage of ether bonds. Acta Chem Scand 26(5): 2005–2023

    Article  CAS  Google Scholar 

  5. Lundquist K (1973) Acid degradation of lignin, part VIII: Low molecular weight phenols from acidolysis of birch lignin. Acta Chem Scand 27(7):2597–2606

    Article  CAS  Google Scholar 

  6. Yasuda S, Terashima N, Ito T (1981) Chemical structures of sulfuric acid lignin II: Chemical structures of condensation products from arylglycerol-β-aryl ether type structures. Mokuzai Gakkaishi 27(3):216–222

    CAS  Google Scholar 

  7. Ito T, Terashima N, Yasuda S (1981) Chemical structures of sulfuric acid lignin III: Reaction of arylglycerol-β-aryl ether with five percent sulfuric acid. Mokuzai Gakkaishi 27(6):484–490

    CAS  Google Scholar 

  8. Yasuda S, Terashima N, Ito T (1981) Chemical structures of sulfuric acid lignin IV: Reaction of arylglycerol-β-aryl ether with seventy-two percent sulfuric acid. Mokuzai Gakkaishi 27(12):879–884

    CAS  Google Scholar 

  9. Yasuda S, Terashima N (1982) Chemical structures of sulfuric acid lignin V: Reaction of three arylglycerol-β-aryl ethers [α-, β-, γ-13C] with seventy-two percent sulfuric acid. Mokuzai Gakkaishi 28(6):383–387

    CAS  Google Scholar 

  10. Yasuda S, Terashima N, Kaneko H (1982) Chemical structures of hydrochloric acid lignin II: Reaction of arylglycerol-β-aryl ether with hydrochloric acid. Mokuzai Gakkaishi 28(9):570–576

    CAS  Google Scholar 

  11. Hoo LH, Sarkanen KV, Anderson CD (1983) Formation of C6C2-enol ethers in the acid-catalyzed hydrolysis of erythro-veratrylglycerol-β-(2-methoxyphenyl) ether. J Wood Chem Technol 3(2):223–243

    Article  CAS  Google Scholar 

  12. Yasuda S, Adachi K, Terashima N, Ota K (1985) Chemical structures of sulfuric acid lignin VIII: Reactions of 1,2-diaryl-1,3-propanediol and pinoresinol with sulfuric acid. Mokuzai Gakkaishi 31(2):125–131

    CAS  Google Scholar 

  13. Karlsson O, Lundquist K, Meuller S, Westlid K (1988) On the acidolytic cleavage of arylglycerol β-aryl ethers. Acta Chem Scand B 42(1):48–51

    Article  Google Scholar 

  14. Yokoyama T, Matsumoto Y (2008) Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin, part 1: Kinetics of the formation of enol ether from non-phenolic C6-C2 type model compounds. Holzforschung 62(2):164–168

    Article  CAS  Google Scholar 

  15. Yokoyama T, Matsumoto Y (2010) Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 2: Detailed reaction mechanism of a non-phenolic C6-C2 type model compound. J Wood Chem Technol 30(3):269–282

    Article  CAS  Google Scholar 

  16. Ito H, Imai T, Lundquist K, Yokoyama T, Matsumoto Y (2011) Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 3: Search for the rate-determining step of a nonphenolic C6-C3 type model compound. J Wood Chem Technol (In Press)

  17. Adler E, Lindgren BO, Saeden U (1952) The β-guaiacyl ether of α-veratrylglycerol as a lignin model. Svensk Papperstidn 57(7):245–254

    Google Scholar 

  18. Lundquist K, Hedlund K (1967) Acid degradation of lignin I: The formation of ketones of the guaiacylpropane series. Acta Chem Scand 21(7):1750–1754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Yokoyama.

Additional information

This article was presented in part at the 54th Lignin Symposium, Shizuoka, Japan, October 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, T., Yokoyama, T. & Matsumoto, Y. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin IV: dependence of acidolysis reaction on the type of acid. J Wood Sci 57, 219–225 (2011). https://doi.org/10.1007/s10086-010-1166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-010-1166-6

Key words