- Original Article
- Published:
Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta
Journal of Wood Science volume 57, pages 317–322 (2011)
Abstract
Endosulfan, an organochlorine insecticide, and its metabolite endosulfan sulfate are persistent in environments and are considered toxic. We investigate the possible nontoxic bioremediation of endosulfan. An endosulfandegrading fungus that does not produce endosulfan sulfate was selected from eight species of white-rot fungi. High degradation of endosulfan and low accumulation of endosulfan sulfate were found in cultures of Trametes hirsuta. A degradation experiment using endosulfan sulfate as the substrate revealed that T. hirsuta is able to further degrade endosulfan sulfate following the oxidative conversion of endosulfan to endosulfan sulfate. Endosulfan and endosulfan sulfate were converted to several metabolites via hydrolytic pathways. In addition, endosulfan dimethylene, previously reported as a metabolite of the soil bacterium Arthrobacter sp., was detected in T. hirsuta culture containing endosulfan sulfate. Our results suggest that T. hirsuta has multiple pathways for the degradation of endosulfan and endosulfan sulfate and thus has great potential for use as a biocatalyst in endosulfan bioremediation.
References
Wan MT, Kuo JN, Buday C, Schroeder G, Van Aggelen G, Pasternak J (2005) Toxicity of α-, β-, (α + β)-endosulfan and their formulated and degradation products to Daphnia magna, Hyalella azteca, Oncorhynchus mykiss, Oncorhynchus kisutch, and biological implications in streams. Environ Toxicol Chem 24:1146–1154
U.S. EPA (2002) Environmental fate and ecological risk assessment for the re-registration eligibility decision on endosulfan (Thiodan). DP Barcode D238673. United States Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Effects Division, Washington, DC
Berntssen MH, Glover CN, Robb DH, Jakobsen JV, Petri D (2008) Accumulation and elimination kinetics of dietary endosulfan in Atlantic salmon (Salmo salar). Aquat Toxicol 86:104–111
Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4′-dichlorobiphenyl, 3,3′,4,4′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909
Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565
Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940
Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436
Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137
Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62:4323–4328
Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366
Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600
Hussain S, Arshad M, Saleem M, Zahir ZA (2007) Screening of soil fungi for in vitro degradation of endosulfan. World J Microbiol Biotechnol 23:939–945
Goswami S, Vig K, Singh DK (2009) Biodegradation of alpha and beta endosulfan by Aspergillus sydoni. Chemosphere 75:883–888
Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pest Sci 35:326–332
Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66:888–891
Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Method Enzymol 161B:238–249
Martens R (1976) Degradation of [8,9,-14C]endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858
Kwon GS, Sohn HY, Shin KS, Kim E, Seo BI (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl Microbiol Biotechnol 67:845–850
Bajaj A, Pathak A, Mudiam MR, Mayilraj S, Manickam N (2010) Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading alpha-endosulfan and endosulfan sulfate. J Appl Microbiol doi: 10.1111/j.1365-2672.2010.04845.x
Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321
Shetty PK, Mitra J, Murthy NBK, Namitha KK, Savitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384. Curr Sci 79:1381–1383
Sutherland TD, Weir KM, Lacey MJ, Horne I, Russell RJ, Oakeshott JG (2002) Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J Appl Microbiol 92:541–548
Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2002) Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of beta-endosulfan. Appl Environ Microbiol 68:6237–6245
Weir KM, Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2006) A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 72:3524–3530
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kamei, I., Takagi, K. & Kondo, R. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta . J Wood Sci 57, 317–322 (2011). https://doi.org/10.1007/s10086-011-1176-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10086-011-1176-z