Skip to main content

Official Journal of the Japan Wood Research Society

Sensory irritations and pulmonary effects in human volunteers following short-term exposure to pinewood emissions

Abstract

Pinewood (Pinus ssp.) is widely used for furniture and building purposes. However, despite its widespread use, information on possible human sensory irritations and pulmonary effects caused by exposure to volatile organic compounds (VOC) emitted from pinewood is sparse. For this purpose, (1) sensory irritation of eyes, nose and throat, (2) lung function parameters (FVC, FEV1), (3) exhaled nitrogen oxide (NO) concentration, (4) eye blink frequency, and (5) sensory evaluation (using the SD method) were investigated before, after, and partly during exposure of human volunteers to emissions from pinewood panels. Fifteen healthy nonsmokers were exposed for 2 h under controlled conditions to VOCs emitted from pinewood panels in a 48 m3 test chamber. VOC concentrations were about 5 mg/ m3 (loading rate, 1 m2/m3), 8 mg/m3 (loading rate, 2 m2/m3), and 13 mg/m3 (loading rate, 3 m2/m3), respectively. Terpene and aldehyde exposure concentrations ranged from about 3.50 ± 0.51 mg/m3 and 0.07 ± 0.008 mg/m3, 5.00 ± 0.95 mg/ m3, and 0.20 ± 0.02 mg/m3 or 9.51 ± 1.10 mg/m3 and 0.21 ± 0.04 mg/m3 for loading rates of 1, 2, and 3 m2/m3, respectively. The emissions consisted predominantly of α-pinene and δ3-carene. No concentration-dependent effects before or after exposure to the emissions were measured with respect to sensory irritation, pulmonary function, exhaled NO, and eye blink frequency. Only the odor of the emissions was perceived by the study subjects, rated as being closer to “pleasant” than to “unpleasant.” In conclusion, the results of our study suggest that short-term exposure to high VOC concentrations, even up to 13 mg/m3, released from pinewood does not elicit sensory irritation or pulmonary effects in healthy humans under controlled conditions.

References

  1. Doty RL, Cometto-Muniz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34:85–142

    Article  CAS  PubMed  Google Scholar 

  2. Risholm-Sundman M, Herder P, Lundgren M, Vestin E (1998) Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh-Werkstoff 56:125–129

    Article  Google Scholar 

  3. Baumann M, Battermann A, Zhang GZ (1999) Terpene emissions from particleboard and medium-density fiberboard products. For Prod J 49:49–56

    CAS  Google Scholar 

  4. Baumann M, Lorenz L, Batterman S, Zhang GZ (2000) Aldehyde emissions from particleboard and medium fiberboard products. For Prod J 50:75–82

    CAS  Google Scholar 

  5. Scholz H, Santl H (1999) Occurrence and assessment of selected volatile organic compounds (VOC) in indoor air. Proc Indoor Air 1:481–486

    Google Scholar 

  6. Ullrich D, Weiland SK, Seifert B (1999) VOC in homes of children with asthma: a case control study of indoor air quality. Proc Indoor Air 4:131–132

    Google Scholar 

  7. Schleibinger H, Hott U, Marchl, D, Braun P, Plieninger P, Rüden H (2001) VOC-Konzentrationen in Innenräumen des Großraums Berlin im Zeitraum von 1988–1999. Gefahrstoffe Reinhaltung Luft 61:26–38

    CAS  Google Scholar 

  8. Schreiner H, Wetzel H, Kirbach I (2001) Innenraumluftbelastung deutscher Kindergärten mit flüchtigen organischen Verbindungen (VOC). Umweltmedizin Forschung Praxis 6:143–149

    CAS  Google Scholar 

  9. Lux W, Mohr S, Heinzow B, Ostendorp G (2001) Belastung der Raumluft privater Neubauten mit flüchtigen organischen Verbindungen. Bundesgesundheitsblatt 44:619–624

    Article  Google Scholar 

  10. Mersch-Sundermann V (2007) Gesundheitliche Bewertung von α-Pinen in der Innenraumluft: Aktueller Erkenntnisstand. Umweltmedizin Forschung Praxis 12:129–151

    CAS  Google Scholar 

  11. Hodgson AT, Rudd AF, Beal D, Chandra S (2000) Volatile organic compounds concentrations and emission rates in new manufactured and site-built houses. Indoor Air 10:178–192

    Article  CAS  PubMed  Google Scholar 

  12. Wolkoff P, Clausen PA, Wilkens CK, Nielsen GD (2000) Formation of strong airway irritants in terpene/ozone mixtures. Indoor Air 10:82–91

    Article  CAS  PubMed  Google Scholar 

  13. Rehwagen M, Schlink U, Herbarth O (2003) Seasonal cycle of VOCs in apartments. Indoor Air 13:283–291

    Article  CAS  PubMed  Google Scholar 

  14. Bodin L, Juto JE, Mølhave L (2006) Upper airway inflammation in relation to dust spiked with aldehydes or glucan. Scand J Work Environ Health 32:374–382

    Article  PubMed  Google Scholar 

  15. Falk AA, Hagberg M, Löf A, Wigeaus Hjelm EW, Wang Z (1990) Uptake, distribution and elimination of α-pinene in man after exposure by inhalation. Scand J Work Environ Health 16:372–378

    Article  CAS  PubMed  Google Scholar 

  16. Falk A, Löf A, Hagberg M, Wigeaus Hjelm EW, Wang Z (1991) Human exposure to 3-carene by inhalation: toxicokinetics, effects on pulmonary function and occurrence of irritative and CNS symptoms. Toxicol Appl Pharmacol 110:198–205

    Article  CAS  PubMed  Google Scholar 

  17. Kasanen JP, Pasanen AL, Pasanen P, Liesivuori J, Kosma VM, Alarie Y (1999) Evaluation of sensory irritation of delta3-carene and turpentine, and acceptable levels of monoterpenes in occupational and indoor environment. J Toxicol Environ Health A 57:89–114

    Article  CAS  PubMed  Google Scholar 

  18. Wolkoff P, Skov P, Franck C, Pedersen LN (2003) Eye irritation and environmental factors in the office environment. Hypotheses, causes, and a physiological model. Scand J Work Environ Health 29:411–430

    Article  CAS  Google Scholar 

  19. Wolkoff P, Wilkins CK, Clausen PA, Nielsen GD (2006) Organic compounds in office environments: sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 16:7–19

    Article  CAS  PubMed  Google Scholar 

  20. Edman K, Löfstedt H, Berg P, Eriksson K, Axelsson S, Bryngelsson I, Fedeli C (2003) Exposure assessment to α- and β-pinene, Δ3-carene and wood dust in industrial production of wood pellets. Ann Occup Hyg 47:219–226

    CAS  PubMed  Google Scholar 

  21. Hedenstierna, G, Alexandersson R, Wimander K, Rosen G (1983) Exposure to terpenes: effects on pulmonary function. Int Arch Occup Environ Health 51:191–198

    Article  CAS  PubMed  Google Scholar 

  22. Cometto-Muniz JE, Cain WS, Abraham MH, Kumarsingh R (1998) Sensory properties of selected terpenes. Thresholds for odor, nasal pungency, nasal localization, and eye irritation. Ann N Y Acad Sci 855:648–651

    Article  CAS  PubMed  Google Scholar 

  23. Ernstgaard L, Gullstrand E, Löf A, Johanson G (2002) Are women more sensitive than men to 2-propanol and m-xylene vapours? Occup Environ Med 59:759–767

    Article  Google Scholar 

  24. Ernstgaard L, Iregren A, Sjögren B, Johanson G (2006) Acute effects of exposure to vapours of acetic acid in humans. Toxicol Lett 165:22–30

    Article  Google Scholar 

  25. Ernstgaard L, Iregren A, Sjögren B, Svedberg U, Johanson G (2006) Acute effects of exposure to hexanal vapors in humans. J Occup Environ Health 48:573–80

    CAS  Google Scholar 

  26. Ernstgaard L, Iregren A, Juran, S, Sjögren B, van Thriel C, Johanson G (2009) Acute effects of exposure to vapors of standard and dearomatized white spirits in humans. 2. Irritation and inflammation. J Appl Toxicol 29:263–274

    Article  CAS  Google Scholar 

  27. Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf S (1996) ’sniffin’ Sticks’: screening of olfactory performance. Rhinology 34:222–226

    CAS  PubMed  Google Scholar 

  28. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243

    Article  CAS  PubMed  Google Scholar 

  29. Katotomichelakis M, Balatsouras D, Tripsianis G, Tsaroucha A, Homsioglou E, Danielides V (2007) Normative Values of Olfactory Function Testing Using the ’sniffin’ Sticks’. Laryngoscope 117:114–120

    Article  PubMed  Google Scholar 

  30. ISO 16000-9 (2006) Indoor air — Part 9: Determination of the emission of volatile organic compounds from building products and furnishing. Emission Test Chamber Method

  31. EN 717-1 (2005) Wood-based panels — determination of formaldehyde release: Part 1: Formaldehyde emission by the chamber method

  32. ISO 16000-6 (2004) Indoor air — Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID

  33. ISO 16000-3 (2001) Indoor air — Part 3: Determination of formaldehyde and other carbonyl compounds: active sampling method

  34. American Thoracic Society/European Respiratory Society Recommendations (2005) Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  35. Hemmingsson T, Linnarsson D, Gambert R (2004) Novel handheld device for exhaled nitric oxide analysis in research and clinical applications. J Clin Monit Comput 18:379–387

    Article  PubMed  Google Scholar 

  36. Kiesswetter E, van Thriel C, Schäper M, Blaszkewicz M, Seeber A (2005) Eye blinks as an indicator for sensory irritation during constant and peak exposures to 2-ethylhexanol. Environ Toxicol Pharmacol 19:531–541

    Article  CAS  PubMed  Google Scholar 

  37. GIRL (2004) Feststellung und Beurteilung von Geruchsimmissionen (Geruchsimmissions-Richtlinie — GIRL) in der Fassung vom 21. September 2004 mit Begründung und Auslegungshinweisen.

  38. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  39. Page EB (1963) Ordered hypotheses for multiple treatments: a significance test for linear ranks. J Am Stat Assoc 58:216–230

    Article  Google Scholar 

  40. Falk Filipson A (1996) Short term inhalation exposure to turpentine; toxicokinetics and acute effects in men. Occup Environ Med 53:100–105

    Article  Google Scholar 

  41. Kharitonov SA, Gonio F, Kelly C, Meah S, Barnes PJ (2003) Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur Respir J 21:433–438

    Article  CAS  PubMed  Google Scholar 

  42. Vahlkvist S, Sinding M, Skamstrup K, Bisgaard H (2006) Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure. J Allergy Clin Immunol 117:1272–1276

    Article  CAS  PubMed  Google Scholar 

  43. Maniscalco M, Sofia M, Pelaia G (2007) Nitric oxide in upper airways inflammatory diseases. Inflamm Res 56:58–69

    Article  CAS  PubMed  Google Scholar 

  44. Turner S (2007) The role of exhaled nitric oxide in the diagnosis, management and treatment of asthma. Mini Rev Med Chem 7:539–542

    CAS  PubMed  Google Scholar 

  45. Price D, Berg J, Lindgren P (2009) An economic evaluation of NIOX MINO airway inflammation monitor in the United Kingdom. Allergy 64:413–414

    Article  Google Scholar 

  46. Brindicci C, Ito K, Barnes PJ, Kharitonov SA (2007) Differential flow analysis of exhaled nitric oxide in patients with asthma of differing severity. Chest 131:1353–1362

    Article  CAS  PubMed  Google Scholar 

  47. Kleno J, Wolkoff P (2004) Changes in eye blink frequency as a measure of trigeminal stimulation by exposure to limonene oxidation products, isoprene oxidation products and nitrate radicals. Int Arch Occup Environ Health 77:235–243

    Article  CAS  PubMed  Google Scholar 

  48. van Thriel C, Seeber A, Kiesswetter E, Blaszkewicz M, Golka K, Wiesmuller GA (2003) Physiological and psychological approaches to chemosensory effects of solvents. Toxicol Lett 140-141: 261–271

    Article  PubMed  Google Scholar 

  49. van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29: 143–151

    Article  PubMed  Google Scholar 

  50. van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29: 143–151

    Article  PubMed  Google Scholar 

  51. Nojgaard JK, Christensen KB, Wolkoff P (2005) The effects on human eye blink frequency of exposure to limonene oxidation products and methacrolein. Toxicol Lett 156:241–251

    Article  CAS  PubMed  Google Scholar 

  52. Iregren A, Tesarz M, Wigaeus-Hjelm E (1993) Human experimental MIBK exposure: effects on heart rate, performance, and symptoms. Environ Res 63:101–108

    Article  CAS  PubMed  Google Scholar 

  53. Järnberg J, Johanson G, Löf A (1996) Toxicokinetics of inhaled trimethylbenzenes in man. Toxicol Appl Pharmacol 140:81–288

    Article  Google Scholar 

  54. Sundblad BM, Larsson BM, Acevedo F, Ernstgaard L, Johanson G, Larsson K, Palmberg L (2004) Acute respiratory effects of exposure to ammonia on healthy persons. Scand J Work Environ Health 30:313–321

    Article  CAS  PubMed  Google Scholar 

  55. Wieslander G, Norbäck D, Venge P (2007) Changes of symptoms, tear film stability and eosinophilic cationic protein in nasal lavage fluid after re-exposure to a damp office building with history in flooding. Indoor Air 17:19–27

    Article  CAS  PubMed  Google Scholar 

  56. Kharitonov SA, Yates D, Barnes PJ (1995) Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 8:295–297

    Article  CAS  PubMed  Google Scholar 

  57. Stick S, Franklin P (2009) NO more dogma. Nitric oxide marker in asthma. Am J Respir Crit Care Med 179:87–92

    Article  PubMed  Google Scholar 

  58. Walinder R, Ernstgaard L, Johanson G, Norbäck D, Venge W, Wieslander G (2005) Acute effects of a fungal volatile compound. Environ Health Perspect 113:775–778

    Article  Google Scholar 

  59. Walinder R, Ernstgaard L, Norbäck D, Wieslander, G, Johanson G (2008) Acute effects of 1-octen-3-ol, a microbial volatile organic compound (MVOC): an experimental study. Toxicol Lett 181: 141–147

    Article  CAS  PubMed  Google Scholar 

  60. Ziegler AE, Zimmer H, Triebig G (2008) Exposure study on chemosensory effects of caprolactam in the low concentration range. Int Arch Occup Environ Health 81:743–753

    Article  CAS  PubMed  Google Scholar 

  61. Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans. A controlled human exposure study. Regul Toxicol Pharmacol 50:23–36

    Article  CAS  PubMed  Google Scholar 

  62. Junker, MH, Danuser B, Monn C, Koller T (2001) Acute sensory responses of nonsmokers at very low environmental tobacco smoke concentrations in controlled laboratory settings. Environ Health Perspect 109:1045–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shusterman D (1992) The health significance of environmental odor pollution. Arch Environ Health 47:76–87

    Article  CAS  PubMed  Google Scholar 

  64. Cain WS, Schmidt R, Wolkoff P (2007) Olfactory detection of ozone and d-limonene: reactants in indoor spaces. Indoor Air 17:337–347

    Article  CAS  PubMed  Google Scholar 

  65. Cain WS, Schmidt R (2009) Can we trust odor databases? Example of t- and n-butyl acetate. Atmos Environ 43:2591–2601

    Article  CAS  Google Scholar 

  66. Knudsen HM, Nielsen PA, Clausen PA, Wilkins CA, Wolkoff P (2003) Sensory evaluation of emissions from selected building products exposed to ozone. Indoor Air 13:223–231

    Article  CAS  PubMed  Google Scholar 

  67. Wilkins K, Wolkoff P, Knudsen HN, Clausen PA (2007) The impact of information on perceived air quality — “organic” vs. “synthetic” building materials. Indoor Air 17:130–134

    Article  CAS  PubMed  Google Scholar 

  68. Ayabe-Kanamura S, Schicker I, Laska M, Hudson R, Distel H, Kobayakawa T, Saito S (1998) Differences in perception of everyday odors: a Japanese-German cross-cultural study. Chem Senses 23:31–38

    Article  CAS  PubMed  Google Scholar 

  69. Dalton P (2003) Upper airway irritation, odor perception and health risk due to airborne chemicals. Toxicol Lett 140–141:239–248

    Article  PubMed  Google Scholar 

  70. Shusterman D, Murphy MA, Balmes J (2003) Differences in nasal irritant sensitivity by age, gender, and allergic rhinitis status. Int Arch Occup Environ Health 76:577–583

    Article  PubMed  Google Scholar 

  71. Glasius M, Lahaniati M, Galagirou A, Di Bella D, Jensen NR, Hjorth J, Kotzias D, Larsen BR (2000) Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ Sci Technol 34:1001–1010

    Article  CAS  Google Scholar 

  72. Docherty KS, Wu W, Lim YB, Ziemann PJ (2005) Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes and O3. Environ Sci Technol 39:4049–4059

    Article  CAS  PubMed  Google Scholar 

  73. Chen X, Hopke PK (2009) Secondary organic aerosol from α-pinene ozonolysis in dynamic chamber system. Indoor Air 19: 335–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gminski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gminski, R., Marutzky, R., Kevekordes, S. et al. Sensory irritations and pulmonary effects in human volunteers following short-term exposure to pinewood emissions. J Wood Sci 57, 436–445 (2011). https://doi.org/10.1007/s10086-011-1182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-011-1182-1

Key words

  • Pinewood emissions
  • VOC
  • Terpenes
  • Sensory irritation
  • Pulmonary