Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Effect of light intensity on diurnal differences in the supply of cell wall components to the innermost surface of developing S2 layers of tracheids in Cryptomeria japonica

Abstract

We investigated the effect of light intensity on diurnal differences in secondary wall formation of tracheids. Saplings of Cryptomeria japonica were grown in growth chambers with light intensity cycles set for 12-h high light: 12-h low light by combining two of four light intensity levels: 1.5, 2.8, 4.3, and 10.0 klx. Volumetric changes of differentiating cells were monitored by measuring the tangential strain on the inner bark surface, and the innermost surface of developing secondary walls of differentiating tracheids during the high-light and low-light periods was observed by field-emission scanning electron microscopy. Changes in the aspects of the innermost surface of developing secondary walls and the tangential strain corresponded to changes in the light intensity level. Cellulose microfibrils were clearly observed when the light intensity was high (10.0 or 4.3 klx) and the volume of differentiating cells was low, while abundant amorphous material was observed when the light intensity was lowest (1.5 klx) and the cells were turgid, regardless of the light intensity cycle. These results suggest that the diurnal periodicity in the supply of cell wall components to developing secondary walls is associated with changes in light intensity during the photoperiodic cycle.

References

  1. Savidge RA (1996) Xylogenesis. Int Assoc Wood Anat J 17:269–310

    Google Scholar 

  2. Plomion C, Le Provost G., Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshida M, Hosoo Y, Okuyama T (2000) Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period. Holzforschung 54:469–473

    CAS  Google Scholar 

  4. Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal differences in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215:1006–1012

    Article  CAS  PubMed  Google Scholar 

  5. Hosoo Y, Imai T, Yoshida M (2006) Diurnal differences in the supply of glucomannans and xylans to the innermost surface of cell walls at various developmental stages from cambium to mature xylem in Cryptomeria japonica. Protoplasma 229:11–19

    Article  CAS  PubMed  Google Scholar 

  6. Hosoo Y, Yoshida M, Imai T, Okuyama T (2003) Diurnal differences in the innermost surface of the S2 layer in differentiating tracheids of Cryptomeria japonica corresponding to a light-dark cycle. Holzforschung 57:567–573

    Article  CAS  Google Scholar 

  7. Alexander JD, Donnelly JR, Shane JB (1995) Photosynthetic and transpirational responses of red spruce understory trees to light and temperature. Tree Physiol 15:393–398

    Article  CAS  PubMed  Google Scholar 

  8. O’Grady AP, Worledge D, Wilkinson A, Battaglia M (2008) Photosynthesis and respiration decline with light intensity in dominant and suppressed Eucalyptus globulus canopies. Func Plant Biol 35:439–447

    Article  Google Scholar 

  9. Miyamoto K, Ueda J, Takeda S, Ida K, Hoson T, Masuda Y, Kamisaka S (1994) Light-induced increase in the contents of ferulic and diferulic acids in cell walls of Avena coleoptiles: its relationship to growth inhibition by light. Physiol Plant 92:350–355

    Article  CAS  Google Scholar 

  10. Casal JJ, Sánchez RA, Paganelli-Blau AR, Izaguirre M (1995) Phytochrome effects on stem carbon gain in light-grown mustard seedlings are not simply the result of stem extension-growth responses. Physiol Plant 94:187–196

    Article  CAS  Google Scholar 

  11. Senanayake SGJN (1995) The effects of different light levels on the nutritive quality of four natural tropical grasses. Trop Grassl 29:111–114

    Google Scholar 

  12. Walton JD, Ray PM (1982) Inhibition by light of growth and Golgilocalized glucan synthase in the maize mesocotyl. Planta 156:302–308

    Article  CAS  PubMed  Google Scholar 

  13. Ciereszko I, Johansson H, Kleczkwski LA (2001) Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J 354:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R (2003) Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol 131:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Erp H, Walton JD (2009) Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl. Planta 229: 885–897

    Article  CAS  PubMed  Google Scholar 

  16. Hosoo Y, Yoshida M, Imai T, Okuyama T (2005) The effect of day length on diurnal differences in the innermost surface of the S2 layer in differentiating tracheids. J Wood Sci 51:323–327

    Article  CAS  Google Scholar 

  17. Inoue T, Osatake H (1988) A new drying method of biological specimens of scanning electron microscopy: The t-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59

    Article  CAS  PubMed  Google Scholar 

  18. Okuyama T, Yoshida M, Yamamoto H (1995) An estimation of the turgor pressure change as one of the factors of growth stress generation in cell walls. Mokuzai Gakkaishi 41:1070–1078

    Google Scholar 

  19. Yoshida M, Yamamoto O, Okuyama T (2000) Strain change on the inner bark surface of an inclined coniferous sapling producing compression wood. Holzforschung 54:664–668

    CAS  Google Scholar 

  20. Yoshida M, Ikawa M, Kaneda K, Okuyama T (2003) Stem tangential strain on the tension wood side of Fagus crenata saplings. J Wood Sci 49:475–478

    Google Scholar 

  21. Northcote, DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178:353–366

    Article  CAS  PubMed  Google Scholar 

  22. Samuels AL, Rensing KH, Douglas CJ, Mansfield SD, Dharmawardhana DP, Ellis BE (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    Article  CAS  PubMed  Google Scholar 

  23. Fricke W, Jarvis MC, Brett CT (2000) Turgor pressure, membrane tension and the control of exocytosis in higher plants. Plant Cell Environ 23:999–1003

    Article  Google Scholar 

  24. Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95: 967–979

    Article  PubMed  PubMed Central  Google Scholar 

  25. Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    Article  CAS  PubMed  Google Scholar 

  26. Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  31. Carpita N, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 52–108

    Google Scholar 

  32. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:407–1420

    Article  Google Scholar 

  33. Kleczkowski LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37:1507–1515

    Article  CAS  Google Scholar 

  34. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hosoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoo, Y., Yoshida, M. & Yamamoto, H. Effect of light intensity on diurnal differences in the supply of cell wall components to the innermost surface of developing S2 layers of tracheids in Cryptomeria japonica . J Wood Sci 57, 345–351 (2011). https://doi.org/10.1007/s10086-011-1196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-011-1196-8

Key words