Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Small-angle X-ray scattering study on nanostructural changes with water content in red pine, American pine, and white ash

Abstract

Wood is a highly sophisticated and multihierarchical material. The nanoscale structures in natural cell walls of red pine, American pine, and white ash specimens were investigated using the small-angle X-ray scattering (SAXS) technique. A tangent-by-tangent method was used to analyze the SAXS data. The results demonstrate that the multihierarchical scatterers in the three specimens can be divided into two dominant components, i.e., a sharp component and a wide component. The sharp component mainly corresponds to the contribution of cellulose microfibrils, and its size is almost unaffected by the water content. However, the wide component includes voids or microcracks and cellulose microfibril aggregates; its size changes, reflecting swelling and water accumulation in the voids or microcracks. Because of the different morphological features of the cell walls, softwood (red pine and American pine) displays different tendencies from hardwood (white ash) in terms of changes in the wide component with water content: the average scatterer size of the wide component has an incremental tendency with the water content in softwood, but it has a descending tendency in hardwood. Fractal analysis further revealed that in white ash the surface of scatterers is coarser and the scatterers form more compact nanostructures than in the two pine woods. All this nanostructural information can be used to explain well the difference of swelling behaviors between the two pines and the white ash.

References

  1. Murata K, Masuda M (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. J Wood Sci 52:283–289

    Article  Google Scholar 

  2. Chirkova J, Irbe I, Andersons B, Andersone I (2006) Study of the structure of biodegraded wood using the water vapour sorption method. Int Biodeter Biodegr 58:162–167

    Article  CAS  Google Scholar 

  3. Ashori A, Sheshmani S (2010) Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behavior. Bioresource Technol 101:4717–4720

    Article  CAS  Google Scholar 

  4. Berthold J, Rinaudo M, Salmen L (1996) Association of water to polar groups: estimations by an adsorption model for lignocellulose materials. Colloid Surf A: Physicochem Eng Aspects 112:117–129

    Article  CAS  Google Scholar 

  5. Hartley ID, Kamke FA, Peemoeller H (1992) Cluster theory for water sorption in wood. Wood Sci Technol 26:83–99

    Article  CAS  Google Scholar 

  6. Oliveira FGR, Candian M, Lucchette FF, Salgon JL, Sales A (2005) A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Build Environ 40:297–300

    Article  Google Scholar 

  7. Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46:310–320

    Article  Google Scholar 

  8. Sadler RL, Sharpe M, Panduranga R, Shivakumar K (2009) Water immersion effect on swelling and compression properties of Ecocore, PVC foam and balsa wood. Compos Struct 90:330–336

    Article  Google Scholar 

  9. Simpson WT (1980) Sorption theories applied to wood. Wood Fiber 12:183–195

    Google Scholar 

  10. Skaar C (1988) Wood-water relations. Springer-Verlag Berlin, Heidelberg, New York

    Book  Google Scholar 

  11. Švedas V (1998) Cellulose-water vapour interaction investigated by spectrometric and ultra-high-frequency methods. J Phys D Appl Phys 31:1752–1756

    Article  Google Scholar 

  12. Virta J, Koponen S, Absetz I (2006) Modeling moisture distribution in wooden cladding board as a result of short-term single-sided water soaking. Build Environ 41:1593–1599

    Article  Google Scholar 

  13. Christensen GN (1967) Sorption and swelling within wood cell walls. Nature 213:782–784

    Article  CAS  Google Scholar 

  14. Simonaho SP, Tolonen Y, Rouvinen J, Silvennoinen R (2003) Laser light scattering from wood samples soaked in water or in benzyl benzoate. Optik 114:445–448

    Article  Google Scholar 

  15. Berry SL, Roderick ML (2005) Plant-water relations and the fibre saturation point. New Phytol 168:25–37

    Article  CAS  PubMed  Google Scholar 

  16. Kouali ME, Vergnaud JM (1991) Modeling the process of absorption and desorption of water above and below the fiber saturation point. Wood Sci Technol 25:327–339

    Article  Google Scholar 

  17. Stamm AJ, Petering WH (1940) Treatment of wood with aqueous solution. Ind Eng Chem 32:809–813

    Article  CAS  Google Scholar 

  18. Stamm AJ (1977) Monomolecular adsorption and crystallite diameters of cellulose from structural and adsorption considerations. Wood Sci Technol 11:39–49

    Article  CAS  Google Scholar 

  19. Parham RA, Gray RL (1984) Formation and structure of wood. In: The chemistry of solid wood. American Chemical Society, Washington, DC, pp 3–56

    Chapter  Google Scholar 

  20. Ma Q, Rudolph V (2006) Prediction of vapor-moisture equilibriums for a wood-moisture system using a modified UNIQUAC model. Chem Eng Sci 61:6077–6084

    Article  CAS  Google Scholar 

  21. Deshpande AS, Burgert I, Paris O (2006) Hierarchically structured ceramics by high-precision nanoparticle casting of wood. Small 2:994–998

    Article  CAS  PubMed  Google Scholar 

  22. Kang W, Chung WY (2009) Liquid water diffusivity of wood from the capillary pressure-moisture relation. J Wood Sci 55:91–99

    Article  CAS  Google Scholar 

  23. Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struct Biol 171:133–141

    Article  CAS  PubMed  Google Scholar 

  24. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, New York

    Google Scholar 

  25. Jungnikl K, Paris O, Fratzl P, Burgert I (2008) The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose 15:407–418

    Article  CAS  Google Scholar 

  26. Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J Struct Biol 113:13–22

    Article  Google Scholar 

  27. Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  28. Jakob HF, Fengel D, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 29:8435–8440

    Article  CAS  Google Scholar 

  29. Reiterer A, Jakob HF, Stanzl-Tschegg SE, Fratzl P (1998) Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering. Wood Sci Technol 32:335–345

    Article  CAS  Google Scholar 

  30. Fratzl P, Jakob HF, Rinnerthaler S, Roschger P, Klaushofer K (1997) Position-resolved small-angle X-ray scattering of complex biological materials. J Appl Cryst 30:765–769

    Article  CAS  Google Scholar 

  31. Hammersley A (1987) Program FIT2D. In: European Synchrotron Radiation Facility, http://www.esrf.eu/computing/scientific/FIT2D. Accessed: May 13, 2011

  32. Jellinek MH, Solomon H, Fankuchen I (1946) Measurement and analysis of small-angle X-ray scattering. Ind Eng Chem 18:172–175

    CAS  Google Scholar 

  33. Jellinek MH, Fankuchen I (1949) X-ray examination of pure alumina gel. Ind Eng Chem 41:2259–2265

    Article  CAS  Google Scholar 

  34. Wang W, Chen X, Cai Q, Mo G, Jiang LS, Zhang KH, Chen ZJ, Wu ZH, Pan W (2008) In situ SAXS study on size changes of platinum nanoparticles with temperature. Eur Phys J B 65:57–64

    Article  CAS  Google Scholar 

  35. Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  Google Scholar 

  36. Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  PubMed  Google Scholar 

  37. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  38. Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416

    Article  CAS  Google Scholar 

  39. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A 35:1267–1276

    Article  Google Scholar 

  40. Robertson AA (1961) The measurement of fiber flexibility. Pulp Paper Can 62:T3–T10

    CAS  Google Scholar 

  41. Chattopadhyay S, Erdemir D, Evans JMB, Ilavsky J, Amenitsch H, Segre CU, Myerson AS (2005) SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst Growth Des 5:523–527

    Article  CAS  Google Scholar 

  42. Grigoriew H, Luboradzki R, Cunis S (2004) In situ studies of monosaccharide gelation using the small-angle X-ray scattering time-resolved method. Langmuir 20:7374–7377

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Xing, X., Wang, D. et al. Small-angle X-ray scattering study on nanostructural changes with water content in red pine, American pine, and white ash. J Wood Sci 57, 470–478 (2011). https://doi.org/10.1007/s10086-011-1202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-011-1202-1

Key words