Skip to main content

Official Journal of the Japan Wood Research Society

  • Original Article
  • Published:

Overexpression of xyloglucanase (AaXEG2) accelerates heteroblastic development in mangium leaves

Abstract

Transgenic mangium trees (Acacia mangium) overexpressing xyloglucanase (AaXEG2) were generated by spraying flower buds with Agrobacterium solution and allowing seeds to develop. The overexpression of xyloglucanase decreased xyloglucan content in the cell walls and increased stem length and diameter. The leaves of the transgenic seedlings exhibited accelerated heteroblastic development, proceeding from the stage of three bipinnate leaves to that of enlarging petiole 2 weeks earlier than wild type seedlings did.

References

  1. Hayashi T (1989) Xyloglucans in the primary-cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  2. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564: 183–187

    Article  CAS  PubMed  Google Scholar 

  3. Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106

    Article  CAS  PubMed  Google Scholar 

  4. Hartati S, Sudarmonowati E, Park YW, Kaku T, Kaida R, Baba K, Hayashi T (2008) Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon. Plant Physiol 147:552–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orchard AE, Maslin BR (2005) The case for conserving Acacia with a new type. Taxon 54:509–512

    Article  Google Scholar 

  6. Bon MC, Bonal D, Goh DK, Monteuuis O (1998) Influence of different macronutrient solutions and growth regulators on micropropagation of juvenile Acacia mangium and Paraserianthes falcataria explants. Plant Cell Tissue Organ Cult 53:171–177

    Article  CAS  Google Scholar 

  7. Matsumoto T, Sakai F, Hayashi T (1997) A xyloglucan-specific endo-1,4-β-glucanase isolated from auxin-treated pea stems. Plant Physiol 114:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and released substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  10. Kooiman P (1960) A method for the determination of amyloid in plant seeds. Recl Trav Chim Pays-Bas 79:675–678

    Article  CAS  Google Scholar 

  11. Hayashi T (1989) Measuring β-glucan deposition in plant cell walls. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis: plant fibers, 10. Springer-Verlag, Berlin, pp 138–160

    Google Scholar 

  12. Kirk TK, Obst JR (1988) Lignin determination. Methods Enzymol 161:89–101

    Google Scholar 

  13. Xie DY, Hong Y (2002) Agrobacterium-mediated genetic transformation of Acacia mangium. Plant Cell Rep 20:917–922

    Article  CAS  Google Scholar 

  14. Vengadesan G, Amutha S, Muruganantham M, Anand RP, Ganapathi A (2006) Transgenic Acacia sinuata from Agrobacterium tumefaciens-mediated transformation of hypocotyls. Plant Cell Rep 25:1174–1180

    Article  CAS  PubMed  Google Scholar 

  15. Yang M, Xie X, Zheng C, Zhang F, He X, Li Z (2008) Agrobacterium tumefaciens-mediated genetic transformation of Acacia crassicarpa via organogenesis. Plant Cell Tissue Organ Cult 95:141–147

    Article  CAS  Google Scholar 

  16. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacteriummediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  17. Pinto PC, Evtuguin DV, Pascoal Neto C (2005) Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood. J Agric Food Chem 53:7856–7862

    Article  CAS  PubMed  Google Scholar 

  18. Iriani D, Lestari W, Isda M (2002) Bipinnate leaf morphological development of Acacia mangium Willd (in Indonesian). J Natur Indonesia 4:1–11

    Google Scholar 

  19. Yu H, Li J (2007) Physiological comparisons of true leaves and phyllodes in Acacia mangium seedlings. Photosynthetica 45:312–316

    Article  Google Scholar 

  20. Hansen DH (1986) Water relations of compound leaves and phyllodes in Acacia koa var. Latifolia. Plant Cell Environ 9:439–445

    Article  Google Scholar 

  21. Forster MA, Bonser SP (2009) Heteroblastic development and the optimal partitioning of traits among contrasting environments in Acacia implexa. Ann Bot 103:95–105

    Article  PubMed  Google Scholar 

  22. Forster MA, Bonser SP (2009) Heteroblastic development and shade-avoidance in response to blue and red light signals in Acacia implexa. Photochem Photobiol 85:1375–1383

    Article  CAS  PubMed  Google Scholar 

  23. Gamage HK, Jesson L (2007) Leaf heteroblasty is not an adaptation to shade: seedling anatomical and physiological responses to light. N Z J Ecol 31:245–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartati, S., Sudarmonowati, E., Kaku, T. et al. Overexpression of xyloglucanase (AaXEG2) accelerates heteroblastic development in mangium leaves. J Wood Sci 57, 463–469 (2011). https://doi.org/10.1007/s10086-011-1211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10086-011-1211-0

Key words